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Abstract 

The positioning and dimensioning of carsharing stations have already been addressed in sev-

eral optimization models applying homogeneous fleets. Yet, carsharing organizations increas-

ingly apply mixed fleets of vehicles with different propulsion methods. We introduce a model, 

which permits a combination of differently powered vehicles and the option to include fleet 

emission constraints to satisfy customer expectations and governmental requirements. It sup-

ports decision makers in solving the challenge of fulfilling demands while maximizing profit. 

With an applicability check, the proposed model is evaluated. Extensive sensitivity analyses 

are presented and discussed indicating how a profitable operation of heterogeneous fleets can 

be established. 

Keywords 

Station-based Carsharing, Transportation, Urban Mobility, Network and Fleet Optimization, 

Sustainability.
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1 Introduction and Motivation 

A growing level of eco-consciousness in public as well as business sectors evokes a rethinking 

of car usage and personal vehicle ownership (Shaheen and Cohen, 2013). In this context, 

carsharing addresses both, the environmental and economic concerns of conventional vehicle 

usage (Alfian et al., 2014). This leads to reduced emissions and grants carsharing clients access 

to a fleet of relatively new and thus environmentally friendly vehicles on a pay as-needed basis 

(Shaheen et al., 2010). As carsharing profitability depends on demand, carsharing services are 

typically offered in urban areas where car ownership can (partly) be dispensed with. With an 

increasing percentage of the world population living in cities and a rapidly rising number of 

people using carsharing, new opportunities for carsharing organizations arise (Dedrick, 2010).  

Supported by technological progress and a variety of available optimization approaches, car-

sharing organizations are able to better plan their networks as well as their fleet sizes and 

offer simplified operational services at high service levels to their customers (Hayashi et al., 

2014; Kaspi et al., 2014). The scope of literature dealing with the functionality of different 

carsharing concepts, the analyses of these concepts, and investigations of use and users is 

manifold. Introduced optimization models focus on diverse goals and support the creation or 

expansion of station-based carsharing networks. But even though potentially crucial to suc-

cess, the implementation of a heterogeneous carsharing fleet has not yet been intensively 

researched on existing models. The option of installing a heterogeneous fleet is deemed im-

portant as it allows a carsharing organization to leverage the benefits of diverse propulsion 

methods and thus address a larger customer pool. While a pure electric fleet contributes to-

wards environmental protection, it creates high costs for vehicle charging infrastructures and 

leads to idle times during charging cycles under present-day conditions (Speranza, 2018). 

While a combustion engine fleet allows for increased capacity utilization, this results in higher 

emissions. The positive effects of reduced emissions and reduced energy consumption can 

thus be reinforced by including alternatively powered vehicles in the carsharing fleet (Shaheen 

et al., 2013). In addition, many of these alternatively powered vehicles already meet the re-

quirements of so far mostly voluntary environmental labelling programs, which in turn repre-

sent a beneficial marketing aspect for carsharing organizations (Millard-Ball et al., 2005). 

Real-life application examples further support the concept of heterogeneity. Especially the 

combination of electric vehicles with petrol-powered vehicles is a growing mixture in today’s 

carsharing fleets. Zipcar, the main provider in the U.S., already successfully applies a hetero-

geneous vehicle approach with vehicle type and propulsion method varying depending on the 

location of offer (Zipcar, 2020). Other providers follow suit and start to partially replace existing 

fleets with electric vehicles, e.g., ShareNow (ShareNow, 2020). 

While increasing the flexibility and availability of vehicles, electric fleets require vehicle charg-

ing infrastructures. Consequently, the integration of electric vehicles makes round-trip carshar-

ing (also called two-way) most feasible for a carsharing network. This means that vehicles 

have to be returned to their designated parking lot or, in the case of electric vehicles, their 

respective charging infrastructure. This is rather limited possible for one-way modes, in which 

vehicles can be driven between designated stations, as more charging infrastructure and relo-

cation costs incur decreasing the profitability of a carsharing organization. Regarding free-

floating carsharing, which allows a vehicle to be left at any allowed parking space within a 
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designated area, these cost-effects are even higher. Based on the number of potential carshar-

ing users, the three carsharing operation modes are typically established within different city 

sizes. As free-floating is usually operated in cities with at least 500.000 inhabitants, round-trip 

carsharing is also suitable for towns with more than 50.000 inhabitants as it is less cost-intense 

to install and no costs for relocation incur. A summary of the above is given in Table 1, which 

shows the specific characteristics of the carsharing modes. 

Table 1: Advantages and disadvantages of different carsharing operation modes 

 One-way Round-trip Free-floating 

Network  
structure 

Station-based; vehicle can be 
picked up and dropped off at any 
station 

Station-based; vehicle needs to 
be returned to a designated  
station / parking lot 

Vehicle can be picked up and 
dropped off at any allowed  
parking space in the area of  
operations 

Advantages for 
the carsharing 
organization 

 Relocation is predictable be-
cause of typically required  
pre-booking 

 No relocation costs 
 Prevents crowded stations/areas 
 No operational management  
 Planning reliability (e.g., utiliza-

tion, maintenance, cleaning) 

 No station costs 

Advantages for 
the customer 

 Fixed location for vehicles  
 Pre-booking is limited possible 
 Cost reductions may be applied 

to support relocation 
 Spontaneous trips possible 
 Round trips possible 

 Fixed location for vehicles  
 Pre-booking possible 
 Spontaneous trips possible 
 Predictable with regard to long-

term scheduling 

 Door-to-door service is possible 
 High flexibility 

Disadvantages 
for the  

carsharing  
organization 

 Station costs 
 Relocation costs (staff vs. user 

incentives) 
 Crowded/vacant stations 

 Station costs  
 Loss of demand for door-to-door 

service 

 Relocation costs (staff vs. user 
incentives) 

 Parking costs in some areas  
 Crowded/vacant areas 

Disadvantages 
for the  

customer 

 No vehicle available at near-
est/preferred station 

 Preferred destination station 
may be occupied 

 Lower flexibility than free- float-
ing/one-way 

 Payment of idle times (e.g., for 
parking) 

 No vehicle available in nearby 
area (limited availability)  

 No pre-booking possible 
 Search for parking lot 

Typical field of 
application 

 Cities up to metropolises  Towns up to metropolises  Large cities and metropolises 

Implications  
regarding 

electromobility 

 Unlimited suitability for pure 
electric fleet 

 Limited suitability for heteroge-
neous fleet 

 Limited availability of  
  vehicle charging infrastructure 

 Relocation necessary 

 Unlimited suitability 

 Limited suitability  
 Ineffective and expensive  
 Relocations necessary for 

charging 

 

With the goal of reducing the overall emissions of a carsharing fleet, while at the same time 

maintaining a customer friendly and yet profit maximizing approach, the above considerations 

favor a unified fleet deploying different propulsion methods, such as electric, hybrid, or com-

bustion engine vehicles in a round-trip mode. Thus, the research questions of this paper is:  

How can an optimization model for strategic and tactical station-based carsharing be designed 

to maximize profit while applying a heterogeneous fleet and obtaining a maximum CO2-

threshold?  

The paper is structured as follows: work regarding carsharing networks and its optimization is 

described the following section 2. Section 3 introduces our optimization model and explains 

the underlying assumptions as well as the input parameters. Section 4 explains our approach 

towards dataset creation, provides benchmarks, and resulting evaluations and generalizations. 

We complete our article with conclusions and an outlook. 



  

5 

 

2 Related Work 

Research on carsharing related topics and the number of respective publications have in-

creased over the past years. Most of these address the history and development of carsharing 

organizations (e.g., Barth and Shaheen, 2002; Shaheen et al., 2009). Others analyze user 

characteristics, user habits, and the willingness to switch from private vehicles as well as the 

environmental and social benefits of this mobility service (e.g., Bardhi and Eckhardt, 2012; 

Clewlow, 2016; Juschten et al., 2019; Nakamura et al, 2019; Shaheen and Cohen, 2013; Sha-

heen et al., 2013; Webb et al., 2019). Besides, many articles deal with the description of 

different carsharing concepts, success factors, or analyses focusing on existing and running 

carsharing organizations (e.g., Costain et al., 2012; Celsor and Millard-Ball, 2007; Kek et al., 

2009; Münzel et al., 2018; Stillwater et al., 2009; Remane et al., 2016). Publications regarding 

the planning and optimization of station-based carsharing are summarized in the following. 

The planning of a carsharing network is divided into three different levels (Boyaci et al., 2015). 

The long-term or strategic perspective determines the allocation of stations regarding number, 

location, and size. A typical medium-term or tactical action is the designation of vehicles to 

these stations. The outcome of these planning stages is an established carsharing network. 

Following long- to medium-term objectives, operational strategies for daily business need to 

be considered. This includes elements such as pricing, re-fueling, or, if required, relocation 

techniques (Correia and Antunes, 2012). These three levels, especially long- and medium-term 

activities, overlap to a certain extent and are therefore often combined in existing models. This 

is feasible in many instances, but needs to be cautiously considered on a case-by-case basis. 

For instance, organizations tend to adjust their prices more often than closing or opening a 

station. The review given below therefore focuses on long- to medium-term strategies and 

considers operational aspects only as part of network planning and fleet assignment. 

A first concept for the strategic selection of carsharing stations is presented by Awasthi et al. 

(2007). Their analytical hierarchy process consists of a three-stage approach and can be ap-

plied for one-way or round-trip modes. In a first step, decision criteria have to be selected and 

potential stations have to be identified. The suggested decision criteria are developed in co-

operation with local planners as well as an established carsharing organization. These contain 

six indicators including demographic, geographic, and transportation elements. Secondly, the 

stations are scored by allotting weights to each decision criterion. Finally, the stations with the 

best overall weights are chosen, provided they exceed a predefined threshold value. Musso, 

et al. (2012) introduce a similar approach for strategic selection using decision criteria to ex-

pand an existing network. Three success factors are derived from the built environment form-

ing the foundation of their approach. These factors are assigned to quarters without existing 

carsharing stations and compared afterwards. New stations are opened in the highest-rated 

regions. The concrete location, size, and vehicle assignment is not calculated. This approach 

is not limited to a specific mode of station-based concepts. Another article presents a frame-

work determining the best expansion strategy for an existing carsharing network limited to the 

round-trip mode: El Fassi et al. (2012) develop a decision support system based on discrete 

event simulation. This combines strategic and tactical elements to react to demand variations. 

Possible strategies include the establishment of new stations, the expansion of existing sta-

tions, and the (de)merging of stations. The optimization objective is to minimize the number 
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of vehicles and stations while maximizing user satisfaction. This is intended to lead to a high 

performance carsharing network with reduced vehicle idle times. 

Focusing on round-trip optimization approaches, Rickenberg et al. (2013) introduce a mathe-

matical model for an optimal selection of number, location, and size of carsharing stations and 

the subsequent fleet assignment. Their model includes a maximum distance constraint be-

tween stations and demand points to satisfy customer needs. With the aid of a stochastically 

distributed demand, the costs for the installation of such a carsharing network are minimized. 

In addition, and to support local planners, a decision support system is presented. Sonneberg, 

et al. (2015) extend this approach to establish a carsharing network consisting of an all-electric 

vehicle fleet. These are charged via selectable infrastructures with variable charging cycles. In 

order to satisfy customers, the demand has to be fulfilled completely. As an operational ele-

ment, time windows throughout the week are introduced to simulate peaks and off-peaks. A 

mixed-integer model maximizes the profit of a carsharing organization. While annual leasing 

costs for vehicles, stations, parking lots, and different charging opportunities are incorporated 

in the model, expenses for staff or office spaces are not considered. 

The following models tackle the optimization of one-way modes and thus integrate to some 

extent the simulation or optimization of arising relocation procedures. Boyaci et al. (2013a) 

suggest an approach to optimize station locations and sizes as well as vehicle assignment. 

Their model is limited to electric vehicles operating in a one-way carsharing scheme and bal-

ances the trade-off between profit maximization and level of service. Relocation shifts are 

required (but not optimized) to satisfy both customer demand and customer satisfaction. De-

spite the use of electric vehicles, charging times are not taken into account, even though they 

negatively influence profit. Boyaci et al. (2013b) extend this work by splitting the objective 

function into two discrete objectives in order to simplify the optimization procedure. Cepolina 

and Farina (2012) provide a cost minimization model for the distribution of small city-accessible 

electric vehicles used within pedestrian areas in the city of Genoa, Italy. Their concept includes 

a fully user-based relocation strategy. Stations are spread over the investigation area and lo-

cated in densely populated areas or at access points to local public transportation or tourist 

attractions. A simulated annealing process determines the tactical fleet optimization of small 

electric vehicles. The user-based relocation is guided by operators offering different pick-up 

and drop-off locations determined by micro-simulations. The focus of these simulations is to 

minimize operator costs while not exceeding a maximum waiting time threshold limit. Correia 

and Antunes (2012) conducted an integration approach that optimizes network design, fleet 

assignment, and operational vehicle relocation. The authors present a mixed-integer problem, 

which employs a branch-and-cut algorithm to maximize the revenues of a carsharing organi-

zation operating in one-way mode. The relocation procedure is conducted by supervisors and 

is only possible after an entire period, for example one day. A relocation is carried out on the 

basis of reservations for the next period, thereby representing a non-dynamic relocation pro-

cess. This approach is extended by Jorge et al. (2012) by including dynamic relocations 

throughout the day. This results in a mixed-integer linear problem with the objective of profit 

maximization. A further refinement by Jorge et al. (2014) considers different scenarios regard-

ing operational relocation. Their model simulates user behavior based on information about 

intention to use other pick-up and drop-off locations. Boyaci et al. (2015) present an optimi-

zation framework refining their previous work concerning electric vehicles in one-way mode. 
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This approach introduces an operative planning level and the inclusion of charging require-

ments additional to the previous ones. A multi-objective mixed-integer linear problem is de-

veloped to maximize the profit of a carsharing organization while at the same time maximizing 

the user net benefit as a monetary function. As the model is not found to be efficiently solvable 

for real-world situations, they derive an aggregated model. This model is solved via a branch-

and-bound algorithm and optimizes an organization’s profit. Subsequently, the model is vali-

dated by an existing carsharing network in Nice, France. Brandstätter et al. (2017) present an 

article to determine optimal locations for charging stations of electric carsharing systems under 

stochastic demand. Introducing a two-stage optimization problem, the utilization of electric 

vehicles is maximized. For larger problem instances, a heuristic algorithm is developed. 

Reviewing these approaches, none of them permits the implementation of heterogeneous 

fleets. Another aspect not yet considered is the inclusion of maximum emission levels to fulfill 

customer expectations or potential future pre-requirements for carsharing fleets. The mathe-

matical model introduced in the following solves the present problems relating to carsharing 

organizations. It supports the network generation of a mixed fleet and tackles the necessary 

planning horizons regarding station-based round-trip carsharing. 

 

3 Problem description and optimization model 

3.1 Problem specification and assumptions 

Before a mathematical model for carsharing network optimization can be introduced and ap-

plied, several requirements need to be considered. Preconditions for successful carsharing are 

related to demographic as well as geographic factors. The typical carsharer is thereby de-

scribed as young to middle-aged, well-educated, and preferably lives in small non-family 

households in apartment buildings with an average of less than one vehicle per household 

(Burkhardt and Millard-Ball, 2006; Firnkorn and Müller, 2012; Morency et al., 2011; Habib et 

al., 2012; Stillwater et al., 2009). Geographic factors include high population density as well as 

walkable and mixed-use urban areas (Cohen et al., 2008; Celsor and Millard-Ball, 2007). These 

considerations include elements such as accessibility and distance to users’ homes as well as 

a shortage of parking possibilities (Celsor and Millard-Ball, 2007). In addition, good coverage 

of local public transport plays an important role for the success of carsharing organizations 

and increases the ability to dispense with a car (Celsor and Millard-Ball, 2007; Cohen et al., 

2008; Stillwater et al., 2009).  

If these requirements are met, the key to a thriving carsharing organization is the optimum 

access, availability, and distribution of vehicles (Barth & Todd, 1999). All of these aspects are 

addressed in our mathematical model. Our model concentrates on strategic and tactical net-

work optimization, allows for a heterogeneous fleet, and considers operation in the round-trip 

mode. Throughout the investigation area, demand and supply points in the form of potential 

stations are assigned and characterized by geographical coordinates. Local conditions have to 

be considered for both demand points and potential stations. This includes, for instance, the 

limited capacity of parking lots. This is influenced by different parking conditions such as bi-

lateral, parallel, and transverse parking as well as on-street and off-street parking. Further-

more, a demand level is assigned to each demand location. These levels are discretely modeled 
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using the Poisson distribution, allotting a number of arrival processes within a timeframe. The 

complete process of dataset creation and assignment of supply and demand points is described 

in Section 4.1. 

To avoid the establishment of unprofitable stations, the assigned demand is not required to be 

completely fulfilled. The model allows some demand points to be served only partially or even 

not at all, while others may be served completely. In order to achieve this, the optimization 

allows a minimum service level to be inserted. To delimit the optimization, this service level 

can be set to zero. To reach a maximum of fulfilled demand, the service level can be set to 

100 percent. Furthermore, a maximum allowable distance between a built station and an as-

signed demand location is adjustable so as not to exceed a specific span and ensure customer 

satisfaction (Morency et al., 2008; Costain et al., 2012; Celsor and Millard-Ball, 2007). 

In addition, vehicles with various propulsion methods, such as combustion engine, hybrid, or 

electric vehicles can be implemented. These vehicles have to be differentiated with respect to 

costs, consumption, range, emission, charging process, and resulting charging time, if appli-

cable. Vehicles operated with other than electric consumables are expected to be filled-up by 

carsharers, which is an efficient approach most carsharing operators adopt (e.g., Zipcar, 2020). 

Annual leasing costs incur for each vehicle, station, and parking lot. These include expenses 

for acquisition, depreciation, amortization, administration, taxes, insurance, service, mainte-

nance, repair, cleaning, and marketing. If electric vehicles are included, charging infrastructure 

also incurs expenses for grid connection. Trips are simulated based on a normal distribution 

regarding duration and distance driven. Respective durations are subdivided into driving time 

and parking time. The calculation of trips and the resulting consumption further considers local 

conditions in the investigation area, such as average speed. 

In addition, an option is included to implement time windows to simulate demand peaks and 

off-peaks. If desired, these could be set per week, day, or a combination of both. Special 

attention must be paid to the Poisson distributed demand, which must be suitable for the time 

window selection. This means that when choosing a demand per week, time windows need to 

be set per week and must not be set per day. To fulfill local environmental labelling programs, 

a maximum average amount of CO2-emissions in g/km over the entire carsharing fleet can be 

set. This results in a confinement of vehicle selection during the optimization process and leads 

to more vehicles with low emissions and lower allowable CO2-emission levels. 

3.2 Input Parameters 

Sets and indices: 

𝑖 = (1, … , 𝐼): 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑗 = (1, … , 𝐽): 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑝 = (1,… , 𝑃): 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 

𝑤 = (1,… ,𝑊): 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 
 

Decision variables: 

𝑑𝑖𝑗𝑝𝑤: 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑓𝑜𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑤 [#] 

𝑣𝑖𝑝: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 [#] 

𝑦𝑖 : 1, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑏𝑢𝑖𝑙𝑡;  0, 𝑒𝑙𝑠𝑒 

𝑧𝑖𝑗 : 1, 𝑖𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖;  0, 𝑒𝑙𝑠𝑒 
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Parameters: 

𝐶𝑝: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [𝑈𝑆$ 𝑝. 𝑎. ] 

𝑒𝑝: 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [𝑈𝑆$/𝑘𝑤ℎ] 𝑜𝑟 [𝑈𝑆$/𝑙] 

𝑓𝑝: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [𝑘𝑤ℎ/𝑘𝑚] 𝑜𝑟 [𝑙/𝑘𝑚] 

𝑘: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑟𝑖𝑣𝑒𝑛 [𝑘𝑚] 

𝐿𝑖: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑡 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 [𝑈𝑆$ 𝑝. 𝑎. ] 

𝑛𝑖: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 [#] 

𝑄: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑛𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 [𝑘𝑚]  

𝑞𝑖𝑗 : 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑛𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑗 [𝑘𝑚] 

𝑟𝑘𝑚: 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑓𝑜𝑟 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑝𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑈𝑆$/𝑘𝑚] 

𝑟𝑚𝑖𝑛: 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑓𝑜𝑟 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑝𝑒𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 [𝑈𝑆$/𝑚𝑖𝑛] 

𝑆𝑖: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 [𝑈𝑆$ 𝑝. 𝑎. ] 

𝑡: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑟𝑒𝑛𝑡 [𝑚𝑖𝑛] 

𝑈: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 [𝑔/𝑘𝑚] 

𝑢𝑝: 𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [𝑔/𝑘𝑚] 

𝑉𝑝: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [𝑈𝑆$ 𝑝. 𝑎. ] 

Θ𝑗𝑤: 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑤 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 [𝑟𝑒𝑛𝑡𝑠/𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤] 

𝛼: 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟𝑖𝑜𝑑 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 [#] 

𝛽:𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑜 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 [#] 

𝛾𝑝: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑖𝑝𝑠 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑝 [#] 

3.3 A MILP for Network Generation and Fleet Assignment  

𝑀𝑎𝑥. 𝐹 (v, 𝑦) =

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 [𝑈𝑆$ 𝑝. 𝑎. ]

𝛼 ∗∑∑∑∑ 𝑑𝑖𝑗𝑝𝑤 ∗ ((𝑡 ∗ 𝑟
𝑚𝑖𝑛) + (𝑘 ∗ 𝑟𝑘𝑚))

𝑊

𝑤=1

𝑃

𝑝=1

𝐽

𝑗=1

𝐼

𝑖=1

⏞                                  

 

− 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 [𝑈𝑆$ 𝑝. 𝑎. ]

𝛼 ∗∑∑∑∑ 𝑑𝑖𝑗𝑝𝑤 ∗ (𝑘 ∗ 𝑒𝑝 ∗ 𝑓𝑝)

𝑊

𝑤=1

𝑃

𝑝=1

𝐽

𝑗=1

𝐼

𝑖=1

⏞                        

 

− 

𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 [𝑈𝑆$ 𝑝. 𝑎. ]

∑∑(

𝑃

𝑝=1

𝑣𝑖𝑝 ∗ (𝑉𝑝 + 𝐿𝑖 + 𝐶𝑝) + 𝑦𝑖 ∗ 𝑆𝑖)

𝐼

𝑖=1

⏞                        

 

 

(1) 

∑𝑧𝑖𝑗 ≥ 1    ∀ 𝑗, 𝑤

𝐼

𝑖=1

 (2) 

𝑦𝑖 ≥ 𝑧𝑖𝑗      ∀ 𝑖, 𝑗, 𝑤 (3) 
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∑∑𝑑𝑖𝑗𝑝𝑤

𝑃

𝑝=1

𝐼

𝑖=1

 ≤ Θ𝑗𝑤   ∀ 𝑗, 𝑤 (4) 

∑𝑑𝑖𝑗𝑝𝑤

𝑃

𝑝=1

≤ 𝑧𝑖𝑗 ∗ Θ𝑗𝑤    ∀ 𝑖, 𝑗, 𝑤 (5) 

∑∑∑𝑑𝑖𝑗𝑝𝑤

𝑃

𝑝=1

𝐽

𝑗=1

𝐼

𝑖=1

∑Θ𝑗𝑤

𝐽

𝑗=1

⁄ ≥ 𝛽    ∀ 𝑤 (6) 

𝑣𝑖𝑝 ∗  𝛾𝑝 ≥ ∑𝑑𝑖𝑗𝑝𝑤

𝐽

𝑗=1

    ∀ 𝑖, 𝑝, 𝑤 (7) 

∑𝑣𝑖𝑝

𝑃

𝑝=1

≤ 𝑛𝑖 ∗ 𝑦𝑖     ∀ 𝑖 (8) 

𝑞𝑖𝑗 ∗ 𝑧𝑖𝑗 ≤ 𝑄     ∀ 𝑖, 𝑗 (9) 

∑∑𝑣𝑖𝑝 ∗ 𝑢𝑝

𝑃

𝑝=1

𝐼

𝑖=1

∑∑𝑣𝑖𝑝

𝑃

𝑝=1

𝐼

𝑖=1

⁄ ≤ 𝑈 (10) 

𝑦𝑖 ∈ {0, 1}     ∀ 𝑖 (11) 

𝑧𝑖𝑗 ∈ {0, 1}     ∀ 𝑖, 𝑗 (12) 

𝑣𝑖𝑝, 𝑑𝑖𝑗𝑝𝑤 ≥ 0     ∀ 𝑖, 𝑗, 𝑝, 𝑤 (13) 

 

The objective function (1) maximizes the annual profit of a carsharing organization. This is 

carried out by calculating the revenues and subtracting the resulting variable and leasing costs; 

all of the leasing costs are on an annual basis. In detail, the revenue equals the product of the 

sum of minutes of rent and the sum of kilometers driven at every established station in each 

time window and for each vehicle type over the number of satisfied trips at each demand 

location. This enables a carsharing organization to generate the revenue on either a time-

dependent and/or distance-dependent basis in the calculation. Aggregated time windows de-

pict one whole week. Hence, we need to multiply one week of revenue by the number of 

operating weeks during one year, which is expressed by 𝑎. The subtracted variable costs in-

corporate the resulting vehicle consumption for these satisfied trips, while allowing for different 

propulsion methods. This leads to the requirement for variations of the type of consumption, 

the average consumption per kilometer, and the costs for one unit of the respective consump-

tion for each propulsion method again multiplied by the number of weeks. In addition, annual 

leasing costs for different kinds of vehicles, required charging infrastructures, parking lots, and 

stations are subtracted. 

The constraints (2) and (3) are necessary for the proper creation of the carsharing network 

and constitutional assignments. Constraint (2) ensures that every demand point is served by 

one or more dedicated stations. The interconnection of (3) denotes that a station has to be 

built before a demand location can be assigned to it.  

The constraints (4) to (7) deal with demand-related characteristics and the resulting supply 

aspect. In constraint 4), the calculation of the satisfied demand per station has to be equal or 

smaller than the existing demand, which is modeled by a Poisson distribution. Constraint (5) 
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ensures the assignment of demand to only established stations in compliance with the demand 

location assignments. As described in Section 3.1, the existing demand is not required to be 

completely fulfilled. Thus, constraint (6) expresses a share as an adjustable minimum service 

level, which implies a minimum percentage of demand that has to be satisfied. Based on the 

number of trips that need to be satisfied, a respective number of vehicles is necessary to fulfill 

this demand, as stated in constraint (7). Therefore, the parameter γ_p defines the maximum 

number of trips possible for a vehicle powered by each propulsion method. This parameter is 

characterized by the following equation (14): 

𝛾𝑝 =
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

𝑡 ∗ (1 +
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑝

(
𝑟𝑎𝑛𝑔𝑒𝑝

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑
)

)

 

(14) 

 

The maximum number of trips within a time window is calculated using the range per propul-

sion method, the average speed within the investigation area, the maximum charging time (if 

applicable), and the duration of a trip proportioned according to the duration of a time window. 

Furthermore, a number of threshold variables limit the optimization process, as expressed in 

equations (8) to (10). A limited number of parking lots for vehicles (8) is allocated to every 

station in order to account for local parking conditions around each potential station. Further, 

the constraint guarantees the existence of at least one vehicle per established station. Con-

straint (9) ensures that a maximum distance between a demand point and an associated sta-

tion is not exceeded. To ensure sustainability aspects, an average emission limit regarding 

carbon dioxide assumed over the whole fleet is covered in constraint (10). Constraints (11), 

(12), and (13) set the specific value range of the decision variables of the underlying model. 

4 Application, Results, and Sensitivities  

4.1 Parameter Definition and Dataset Development 

The described MILP is developed to establish a profitable carsharing network at highest pos-

sible service rates. When applying the optimization approach, the quality and level of the input 

values strongly affect the results of the underlying model. This not only includes cost-related 

parameters, such as vehicle and station costs, but also the assumed demand, which consider-

ably influences the solution. Accurate input values and realistic demand estimates are therefore 

crucial to the success of the carsharing network and fleet planning with the introduced model. 

Various approaches regarding demand and station dataset creation, as well as the choice of 

input parameters are explained and discussed in the following. 

The establishment of a new carsharing network is often difficult due to missing data of ac-

ceptance and demand in the chosen investigation area. Many existing approaches, e.g., Boyaci 

et al. (2015), Lee and Park (2012), or Nourinejad and Roorda (2014), estimate the demand 

based on empirical values of carsharing organizations already in operation to evaluate and 

validate new optimization models. While accurate for a specific area, such procedures are not 

transferable to other areas or different carsharing approaches. This similarly applies to different 

network structures. Even though the approach helps to validate a model, a method to adapt 
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this model to a new area is lacking. We therefore conclude that these approaches are neither 

flexible nor adequate enough for practical applications. In order to realize a model with wider 

applicability, we hence developed a new estimation approach to generate demand values irre-

spective of existing carsharing services. 

Our demand estimation is based on carsharing user characteristics identified in the scientific 

literature. This refines and extends the approach of Sonneberg et al. (2015) by providing cal-

culation models with an accurate derivation and description of these calculations. While many 

attributes of a typical carsharer differ between publications, five characteristics are consistently 

supported by the investigations. These serve as predictor variables for our demand estimation 

and describe the typical carsharer as young to middle aged, well-educated, living in small non-

family households, in apartment buildings, with less than one vehicle per household (see sec-

tion 3.1). Other characteristics, such as (household) income, marital status, or gender are 

excluded due to inconsistent investigation results (e.g., Jorge and Correia, 2013). 

The first step in our demand estimation approach is to subdivide the investigation area into 

smaller parts. Census criteria, such as the American classification into blocks by the US Census 

Bureau may be used to support this step. Such a block typically involves several buildings, 

which results in smaller subdivisions of approximately 500 to 3,000 individuals. The most 

densely populated point of each block is used as its center and serves as a demand point 

described by geographical coordinates. As a result, the whole investigation area is covered 

with demand points. The five characteristics of the typical carsharer are used to estimate the 

demand level per block. The respective values for these characteristics should be based on 

(forecasted) data published by governments or independent institutes. Before the potential 

user group of each block can be calculated, shares for each chosen characteristic need to be 

identified (equations (15) – (19)). These shares are determined for each block individually and 

then form the basis for calculating the potential user group per block. 

# 𝑖𝑛ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠 𝑎𝑔𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 21 𝑎𝑛𝑑 44

# 𝑖𝑛ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠
=  ∆ 𝑎𝑔𝑒 (15) 

# 𝑖𝑛ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑎 𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠 𝑑𝑒𝑔𝑟𝑒𝑒

# 𝑖𝑛ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠
= ∆ 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 (16) 

# 𝑠𝑚𝑎𝑙𝑙 𝑛𝑜𝑛 − 𝑓𝑎𝑚𝑖𝑙𝑦 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠

# ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠
= ∆ ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑦𝑝𝑒 (17) 

# ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑜𝑟 𝑛𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

# ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠
= ∆ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 (18) 

# 𝑎𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 5 ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠

# 𝑎𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠
= ∆ ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 (19) 

 

For the share of carsharers within the typical age range, equation (15) divides the number of 

inhabitants per block of the corresponding age group by the number of total inhabitants per 

block. Similarly, the comparatively high level of education of the typical carsharer is accounted 

for in equation (16). For the shares of vehicle availability and household type, the number of 

households per block serves as a basis for the calculation. Carsharers tend to live in small non-

family households, as stated in equation (17). As indicated by equation (18), these households 

are equipped with one or no vehicle. As expressed by equation (19), these types of households 

are typically embodied into larger apartment buildings with more than five housing units. Cer-

tainly, there is also a minor percentage of additional carsharers who do not fall into the typical 
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profile described above, e.g., with regard to age structure. As this number is deemed negligi-

ble, however, it is not expected to significantly affect the overall demand estimation and is 

therefore not considered. 

As shown in equation (20), the potential user group participating in carsharing services for 

each block is then determined by multiplying these five shares. As every potential user does 

not actually participate in carsharing, the absolute number of carsharers is much lower. This 

ratio (𝜆) depends on various regional aspects such as the infrastructure of the investigation 

area or attitudes towards the sustainability of inhabitants. Therefore, the assumed 𝜆 should 

be varied based on these conditions; in our calculations we assume a default 𝜆 of 0.05, which 

is varied between 0.01 and 0.10 in section 4.2.5. 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑢𝑠𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 = 
λ ∗ (∆ 𝑎𝑔𝑒 ∗ ∆ 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗ ∆ ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑦𝑝𝑒 ∗ ∆ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ∗ ∆ ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠) 

(20) 

 

Depending on the result obtained from equation (20), the potential user group can drop to 

zero in blocks with a majority of family households or elderly population, and the demand 

points can be eliminated. Based on the resulting potential user groups per block, the actual 

demand levels can be calculated. Diverse analyses of the behavior of carsharing users conclude 

that a carsharer requests three trips per month on average (Habib et al., 2012; Morency et al., 

2011; Millard-Ball et al., 2005). When applying this value to the above user groups, a certain 

demand level results for each block. Our approach incorporates these demand levels on a 

weekly basis with the option to simulate peaks and off-peaks throughout the week. If required, 

a planner can adapt the demand structures and focus on different time spans via time win-

dows. To simulate varying arrival processes of carsharing customers, the inputs are then cal-

culated following the Poisson distribution within the optimization process. To satisfy the result-

ing demand levels, supply points need to be established which represent potential station 

locations. Due to the proven correlation between public transport and carsharing, possible 

station locations should be set close to public transportation access points (Celsor and Millard-

Ball, 2007). The parking situation around each potential station location has to be considered 

as this limits the possible number of parking lots. Existing parking lots can be used as a basis 

for this determination.  

In addition to the demand levels and potential station locations, parameters such as vehicle 

costs as well as vehicle consumptions or emissions are required for the optimization process. 

Representative input values are preset in the optimization model to facilitate completion of the 

optimization process. These values are summarized in Table 2 and explained in the following. 

The composition of cost elements is described in Section 3.1. The values for the annual leasing 

costs of a vehicle, the related CO2-emissions, and consumption are chosen on the basis of 

manufacturer's data (official brochure data). For the following calculations, we choose identical 

annuals costs for each station and parking lot. To allow for comparability between the different 

propulsion methods, the Renault CLIO (petrol-driven) and the Renault ZOE (electrically pow-

ered), which are otherwise constructed identically, are chosen. The range of the electric vehicle 

is used for calculating the required charging cycles and therefore does not apply to the petrol-

driven variant. 

Values for trip duration in terms of time and distance are based on previous investigations 

(e.g., Cervero and Tsai, 2004; Duncan, 2011; Morency et al., 2011), as is the chosen maximum 

distance (e.g., Celsor and Millard-Ball, 2007; Costain et al., 2012; Morency et al., 2008).  
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Table 2: Chosen Values of Input Values 

Parameter (vehicle-related) Value Parameter (operational) Value 

Petrol vehicle [US$ p.a.] 2,400 Revenue per minute [US$] 0.04 

Electric vehicle [US$ p.a.] 4,200 Revenue per km driven [US$] 0.26 

Parking lot [US$ p.a.] 2,400 Price per kWh [US$] 0.20 

Cost per station [US$ p.a.] 600 Price per liter petrol [US$] 0.80 

Charging infrastructure [US$ p.a.] 6,000 Parameter (trip-related) Value 

CO2-emission (Petrol) [g/km] 127 Average trip duration [min] 120 

CO2-emission (Electric) [g/km] 0 Std. dev. trip duration [min] 60 

Max. average CO2-emission [g/km] 75 Average trip distance [km] 35 

Parameter (demand-related) Value Std. dev. trip distance [km] 20 

Monday [%] 10 Energy consumption per km [kWh] 0.07 

Tuesday [%]  10 Petrol consumption per km [l] 0.1 

Wednesday [%] 10 Parameter (other) Value 

Thursday [%] 10 Max. distance [km] 0.75 

Friday [%] 15 Max. range of electric vehicle [km] 210 

Saturday [%] 25 Charging time [min] 30 

Sunday [%] 20 Average speed [km/h] 25 

Potential user group λ [%] 5 Min. level of service [%] 75 

 

The revenues per minute and kilometer driven result from a web-based comparison of different 

existing round-trip carsharing organizations (Greenwheels, 2020; Stadtmobil carsharing, 

2020). Similarly, the costs for a fast-charging infrastructure and the resulting charging times 

result from a market analysis. Consumptions for operational business are at current market 

price. Parking lot and station costs as well as average speed are adjusted to local conditions. 

The average CO2-emission limit for the entire fleet is adjustable to fulfill local environment 

labelling programs. Our pre-set value of 75 g/km can only be attained when using a combined 

fleet of electric and petrol-driven vehicles. We selected seven time windows (Monday to Sun-

day; each 24 hours long) to depict peaks and off-peaks during a week. The demand-related 

distribution is determined from the real data of a German carsharing organization. 

4.2 Benchmark and Sensitivities 

4.2.1  Investigation Area of San Francisco 

The developed optimization model for the strategic and tactical planning of a heterogeneous 

carsharing fleet is applied and validated in this Section. Using the case example of San Fran-

cisco, the annual profit of a carsharing organization is optimized, compared, and elucidated 

for different scenarios. San Francisco is chosen due to its high population density of over 6,500 

inhabitants per square kilometer, its parking shortage, the mix modes of transportation, and 

the resulting ability to dispense with a vehicle. The city consists of eleven districts, which form 

the basis for the comparison of differently populated areas in our benchmarks. It is further 

divided into 573 blocks in accordance with the U.S. Census Bureau based on census data. The 

positioning of demand locations was set analogous to the subdivision of blocks, as suggested 

in Section 4.1. 
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Each block is characterized by a particular demand location at its center of settlement with 

assigned geographical coordinates. In addition, a total of 1,448 potential carsharing stations 

are distributed over the whole investigation area, likewise using precise geographical coordi-

nates. Due to the well-developed public transport system covering the majority of the city, 

close proximity of potential stations to public transportation access points is easy to ensure. 

Our benchmarks are established using single districts and combinations of districts of San 

Francisco, which differ in size and population, as shown in Fig. 1 and quantified in Fig. 2 as 

well as in Table 3. 

 

 

Figure 1: Visualization of Eleven Districts of the Investigation Area of San Francisco 

As shown in Figure 1, some areas such as districts 1, 2, and 7 include parks, lakes, or coun-

tryside areas, whereas others, such as districts 8 and 9 are completely urbanized. This leads 

to differences between the districts regarding demand points, demand level per week, and 

potential stations per district. An overview of the number of demand points, potential stations 

and expected demand levels per week in the various districts is given in Figure 2. 

 

 

Figure 2: Number of Potential Stations, Demand Points, and Demand Levels per District 
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Due to its relatively large area (measured on the basis of the surface occupied) with a combi-

nation of apartment blocks and the lake area, district 7 has a high number of potential stations 

assigned to it, while the overall demand is comparatively low. In contrast, districts 2 and 3 

have a high estimated demand per week compared to their overall size due to their larger 

number of apartment buildings, which is typical for high carsharing demands. 

Our benchmarks and sensitivity analyses are carried out using so-called clusters consisting of 

different combinations of districts. These clusters are defined in Table 3 with their respective 

overall numbers of demand points and potential stations. For classifying and allocating districts 

to the clusters, we follow the demand levels beginning with the most distinct ones. The objec-

tive of this procedure is to visualize to what extent the choice of the investigation area influ-

ences profit and service level of the carsharing organization. The first cluster consists of district 

2 due to its highest existing group of potential users and the resulting high level of demand. 

The second cluster additionally includes district 3. Clusters 3 and 4 are similarly augmented. 

Cluster 5 finally contains all eleven districts representing the entire city of San Francisco. An 

overview is provided in Table 3. By adjusting diverse input values in the optimization model, 

these clusters are examined and compared to each other in the following in order to validate 

our optimization model. 

Table 3: Distribution of Clusters and Contained Districts 

Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Contained  
districts 

D2 D2 & D3 
D2, D3, D5, & 

D6 
D2, D3, D5, D6, 
D1, D8, & D9 

D1 – D11 

# Demand 
points 

49 99 176 283 305 

# Potential  
stations 

107 191 400 844 1,448 

 

4.2.2  Comparison of Different Clusters 

Our initial set of benchmarks for all five clusters is based on the preset input parameters 

introduced in Table 2. The results are presented in Table 4 and include the overall profit, 

number of stations, electrically powered as well as petrol-driven vehicles, average CO2-emis-

sions, demand satisfaction, computing time in total (accumulated calculation times of all cores) 

and calculation time. Calculations were performed on a Linux cluster system (16 cores each @ 

2.4 GHz CPU with 64 GB RAM) using GAMS 24.5.6 with CPLEX 12.6.2 and a set optimization 

gap of 3%. 

Table 4: Initial Benchmarks for All Clusters 

Clustered   
districts         

[3% gap] 

Profit  

[US$] 

# Sta-

tions 

# Vehicles Av. CO2-
emission 
[g/km] 

Demand 
satisfac-

tion  
[%] 

Computing 
time in to-
tal [mm:ss] 

Calculation 
time  

[mm:ss] Petrol 
Elec-
tric 

Cluster 1 165,567 5 4 3 72.57 99.7 00:10 00:05 

Cluster 2 337,500 8 8 6 72.57 99.8 01:06 00:50 

Cluster 3 611,785 18 15 11 73.27 99.8 08:15 04:06 

Cluster 4 665,355 27 21 15 74.08 98.9 16:54 08:38 

Cluster 5 629,405 36 25 18 73.83 99.6 18:49 10:06 
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Although profit increases with larger investigation areas, this only applies if the relation be-

tween demand and supply is balanced. In cluster 5, stations also need to be built for areas 

with lower demand levels, which implies a decrease in profit compared to cluster 4. When 

examined in more detail, the profit is found to almost double between the first and second as 

well as the second and third cluster, meaning that districts 2, 3, 5, and 6 are similarly profitable. 

This is in line with the demands shown in Table 3. The profit in cluster 4 increases less, as 

demands are lower, and eventually decreases in cluster 5. From an economic perspective, this 

implies that adding the last districts D4, D7, D10, and D11 is not worthwhile for carsharing 

organizations due to low expected demands in these areas. 

The number of stations and overall vehicles increases with larger clusters, as this involves a 

larger operating area and hence more demand points are satisfied. The composition of the 

heterogeneous fleet changes with more included districts since the annual leasing costs are 

much lower for petrol-driven vehicles than for electrically powered ones. The electric vehicles 

are preferably deployed with a high occupancy rate because of the comparatively low operating 

costs (less consumption and less energy costs). With more included districts and reduced oc-

cupancy rates, more petrol-driven vehicles are selected due to lower fixed leasing costs and 

no costs for charging infrastructures. 

The CO2-emission limit depends on the shares of electric and petrol-driven vehicles and is set 

at 75 g/km as an initial value. The actual average CO2 limit in all clusters is only slightly below 

this maximum level. This implies that electric vehicles are merely used to keep within the CO2-

emission limit. Although electric vehicles (including the necessary charging infrastructure) are 

indeed more expensive than petrol-driven vehicles, they use cheaper energy than petrol-driven 

ones and have a lower consumption. It is more cost-efficient to use electric vehicles at a high 

demand profile due to the above-mentioned energy price and consumption advantages of this 

propulsion method. The demand satisfaction is highest in clusters 2 and 3 (99.8%) and is less 

in clusters 4 and 5 due to the addition of comparatively less economical districts. As expected, 

the computing time in total increases in larger clusters. This can be explained by the larger 

operating area with an increase in demand locations and more possibilities to install stations 

and vehicles. Our model is solved by CPLEX, which uses multi-threads to calculate the solu-

tions. The results of our strategic and tactical optimization computations were obtained within 

a few minutes depending on the sizes of the underlying cluster and respective number of 

contained demand points and potential stations. 

4.2.3  Comparison of Heterogeneous and Homogeneous Fleets 

To ascertain the impact of our mixed fleet composition (M), we compare the initial benchmark 

of each cluster with calculations involving solely petrol (P) and electric (E) vehicles; CO2-emis-

sion levels are ignored for these cases. The calculation findings for the number of necessary 

vehicles as well as the expected profit and demand satisfaction are visualized in Figure 3. 

The number of vehicles for the three considered fleet options is found to increase when more 

districts are added (see also Table 4 and its description). The number of used vehicles is the 

lowest in all clusters when a pure electric fleet is applied. The profit and demand satisfaction 

are lowest when compared to the other two fleet compositions. This is due to the higher initial 

costs of an electric vehicle and the required charging infrastructures compared to a petrol-

driven one.  
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Figure 3: Impact of Fleet Composition on Number of Vehicles, Profit, and Demand 
Satisfaction 

Another aspect is the necessary charging cycle, which has to be considered as an additional 

operating factor. If electric vehicles have high occupancy rates, they are cheaper regarding the 

operation business owing to less and cheaper consumption and thus become worthwhile for a 

carsharing business. 

The number of petrol-driven vehicles and the total number of vehicles within a mixed fleet are 

approximately equal over the five considered clusters, which is also reflected in demand satis-

faction. When analyzing the distribution of vehicles, petrol-driven vehicles are found to be 

slightly predominant compared to electric ones in all clusters.  

Profit is found to be slightly less for a mixed fleet composition due to the higher costs for 

electric vehicles. Nevertheless, when considering the pure electric fleet, demand satisfaction 

is found to be highest in the first cluster (95.6%) before it decreases (to below 92.8%) and 

finally rises again in cluster 5. The highest value in cluster 1 is associated with high expected 

demands and the resulting high occupancy rates for electric vehicles. The subsequent decrease 

depicts the weaker districts in terms of demand, and hence less demand is sufficient to still 

maximize the profits of the carsharing business. In cluster 5, demand satisfaction again rises 

to realize higher profits, even though less worthwhile districts are included. The impact of the 

less worthwhile districts can also be seen in the profit development. For a pure electric fleet, 

the profit is reduced by approximately US$ 60,000, but only by ~US$ 15,000 for a pure petrol 

vehicle fleet and ~US$ 36,000 for a mixed fleet. To conclude, cluster 4 is most profitable for 

heterogeneous and homogeneous fleets. For this reason, cluster 4 is chosen for the following 

benchmark calculations and sensitivity analyses performed for heterogeneous fleets. 

4.2.4  Impact of Various Maximum Distances 

Ceteris paribus, we vary the maximum allowed distance between a demand point and the 
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as well as on profit and demand satisfaction using cluster 4 due to its most profitable charac-

teristics. The respective results are shown in both parts of Figure 4, which is divided into five 

parts with 0.5 km, 0.75 km, 1 km, 1.25 km, and 1.5 km as the maximum allowed distance. 

For each distance, the corresponding annual profit, number of stations, and the number of 

vehicles are shown in the left part of Figure 3. In the right part of the figure, the same is 

carried out for profit (primary vertical axis) and demand satisfaction (secondary vertical axis). 

 

 

Figure 4: Variation of Maximum Distance and Impact on Stations, Vehicles, Profit, and 
Demand Satisfaction (Cluster 4) 

In general, with an increasing maximum distance, a tendency towards fewer overall vehicles 

and less established stations can be observed while demand satisfaction does not vary signif-

icantly. A lot more stations and vehicles must be provided within shorter distances to satisfy 

customer needs. Therefore, the occupancy rate of vehicles is less with lower distances and 

hence reduces profit. Correspondingly, a trend to an increase in profit with larger maximum 

distances is evident, as especially less stations as well as fewer vehicles are required to satisfy 

customer needs. However, higher distances can negatively impact customer satisfaction due 

to greater effort and more time required to reach the nearest station. These aspects are not 

considered in our approach. At a maximum distance of only 0.5 km, more than 50 stations 

equipped with just one vehicle per station have to be installed to generate a dense network of 

stations throughout the investigation area. The number of stations rapidly decreases with an 

allowed maximum distance of 0.75 km. The customer satisfaction of demanded trips is fairly 

high and slightly varies between 98.9% and 99.5%.  

These benchmarks are in line with expectations, as less stations and vehicles are required with 

larger maximum distances accompanied by an increase in profit. This results from the assign-

ment of more demand points to one station due to the fact that customers are compelled to 

accept longer distance to the next station which increases the occupancy rate of vehicles. 

Regarding demand satisfaction, no clear trend is visible. It should be noted, however, that the 

overall demand might decrease if no carsharing station is available nearby. 
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4.2.5  Impact of Various Demand Levels  

This section examines the ceteris paribus impact of varying demand levels at a maximum 

distance of 0.75 km using cluster 4. Besides the impact on the required number of stations 

and vehicles, the significant influence of demand on overall profit and hence the success of a 

carsharing organization is visualized. The demand ratio 𝜆 of 5%, which was initially chosen for 

the city of San Francisco, may not apply to cities with less public transport, lower public interest 

in carsharing, or a high number of competitors. 𝜆 is therefore varied between 0.01 and 0.10. 

The respective results are presented in Figure 5. 

 

 

Figure 5: Variation of Demand Levels and Impact on Stations, Vehicles, Profit, and Demand 
Satisfaction (Cluster 4) 

As evident in Figure 5, the demand level strongly influences the expected profit as well as the 

number of stations and vehicles required. A 𝜆 of 0.01 results in a negative outcome of US$ 

62,400, which means that a carsharing business is not worthwhile at this low demand value; 

for a 𝜆 of 0.1, however, the profit increases to more than US$ 1,500,000. This growth in profit 

is almost linear and in line with the rising demand profile. Similarly, the number of stations and 

vehicles almost linearly rises, starting with 19 stations and 19 vehicles for a 𝜆 of 0.01 and 

increasing to 38 stations and 62 vehicles for a 𝜆 of 0.1, also resulting in an increase of the 

vehicle per station ratio. The demand satisfaction fluctuates around 99%. With a 𝜆 of 0.01, 

the existing demand is fulfilled completely to avoid even more negative outcomes owing to 

unsatisfied trips. A 𝜆 of 0.03 results in a decrease of demand satisfaction but in an increase in 

profits. At subsequent demand levels, the demand satisfaction rate is found to increase.  

This increase in profit with higher demand is in line with expectations. It highlights the im-

portance of correctly assessing the habits of potential users in order to realistically evaluate 

demand. Small misjudgments in this regard can easily make the difference between business 

success and failure of a carsharing organization. 
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4.2.6  Impact of CO2 Levels as well as Energy and Petrol Prices 

In the following part of our sensitivity analysis, we vary the prices of petrol and energy for 

different CO2-emission limits to demonstrate the respective influence on network structure. On 

the one hand, this takes into account recent developments on the energy market, leading to 

uncertainty of energy and petrol prices. On the other hand, it also includes potential future 

limitations regarding the maximum allowed emissions of a carsharing fleet, which can either 

be self-motivated and as a competitive advantage or externally required by way of a city or 

country directive. 

The sensitivity analysis is again run on cluster 4. We include calculations on three different 

maximum levels of average CO2-emissions (50, 100, and 150 g/km) for two possible energy 

price levels (US$ 0.10 and US$ 0.30 per kWh) and for four possible prices of petrol (US$ 0.50, 

US$ 1.00, US$ 1.50, and US$ 2.00 per liter). The results of these calculations are presented, 

compared, and discussed in the corresponding diagrams of Figure 6 for all six scenarios. Bars 

in the diagram illustrate the number of petrol-driven as well as electric vehicles. Additionally, 

the shift of the average CO2-emissions is shown on the secondary vertical axis. The number of 

overall stations is not illustrated as this only varies marginally between the different scenarios 

with a minimum of 27 and a maximum of 33 stations and with no observable relation to price 

variations. Our most important consideration concerns the change in composition of the het-

erogeneous fleet. Regarding the benchmarks, this means that the varying number of electric 

and petrol-driven vehicles in combination with different CO2-emission levels is a focus of at-

tention in the following. 

At a first glance, it is apparent that the number of electric vehicles exceeds the number of 

petrol-driven vehicles for the lowest maximum average CO2 level of 50g/km, irrespective of 

energy and petrol prices. In addition, the number of electric vehicles increases with rising 

petrol prices and a corresponding decrease in petrol-driven vehicles. In detail, we notice that 

in most scenarios with low petrol prices (0.50 US$/l), the CO2 limit restricts the number of 

petrol-driven vehicles since electric vehicles are less profitable as long as the price of petrol is 

comparatively low. With a rising price of petrol, the number of electric vehicles is found to 

increase. Consequently, a tendency towards reduced average CO2 levels can be observed. It 

is notable that even with a high maximum CO2-emission level, electric vehicles are selected 

(with the exception of a petrol price of US$ 0.50 per liter) for the carsharing fleet, as these 

appear to be a profitable alternative in certain areas. Petrol-driven vehicles are deployed in 

every scenario of the sensitivity analyses with a tendency towards fewer vehicles for a rising 

petrol price, even though this tendency is only weak for the lower CO2-emission level. Although 

average CO2-emissions strongly depend on the maximum limits, these also show a clear de-

crease with rising petrol prices due to the deployment of more electric vehicles. In scenarios 

3 to 6 and a price of petrol of only US$ 0.50 per liter the number of petrol-driven vehicles 

strongly dominates, since the maximum average CO2 limit allows for this composition. Electric 

vehicles are almost eliminated at this petrol price within a limit of 100 g/km and are completely 

eliminated in the scenarios with a limit of 150 g/km. This indicates that the CO2 limit has a 

significant impact on the composition of the carsharing fleet as long as the price of petrol is 

low. In this case, electric vehicles are unattractive in terms of profitability and are only selected 

to comply with CO2 restrictions. Nevertheless, the distribution is found to change with higher 

petrol costs. Electric vehicles become more attractive due to the increasing gap between petrol 

and energy price as well as the lower consumption of an electric vehicle. 
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Figure 6: Impact of Various CO2 Levels and Prices on Fleet Structures (Cluster 4)  
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For an energy price of only US$ 0.10 per kWh and a high petrol price of US$ 2.00, electric 

vehicles even comprise the majority of the fleet regardless of the maximum allowed average 

CO2-emissions. The high number of electric vehicles is primarily governed by the CO2 limit 

while the price impact becomes negligible. However, in all other calculations, petrol-driven 

vehicles dominate due to their lower annual leasing costs and no costs for charging infrastruc-

ture. Some minor exceptions to the general tendencies exist and can again be explained by a 

combination of a varying demand satisfaction, normal variance of the calculation, and the set 

gap of 3%. 

In the following, we consider the impact of different CO2 levels as well as petrol and energy 

prices on the expected annual profit for a carsharing organization. Similar to the above bench-

marks, we compare three different maximum CO2 levels and vary the prices of energy and 

petrol. The resulting expected profits are illustrated as two lines for the two different energy 

prices and show the development of four possible petrol prices. Figure 7 shows the sensitivity 

analysis results for the six mentioned scenarios combined in three diagrams.  

The lines within the same maximum CO2 level scenario show similar patterns. Additionally, the 

yellow lines for energy costs of US$ 0.10 per kWh (scenario 1, 3, and 5) are above the green 

lines for energy costs of US$ 0.30 (scenario 2, 4, and 6), as a higher profit can be achieved 

when energy costs are lower. 

 

 

Figure 7: Impact of Various CO2 Levels and Prices on Expected Profit (Cluster 4) 

A general tendency can be perceived for decreasing CO2 limits, which reduce the overall profit. 

Depending on the application area, electric vehicles appear to be less profitable compared to 

petrol-driven ones even though they represent the majority of the fleet. Thus, profit depends 

on the composition of the fleet when CO2 limits restrict the number of petrol-driven vehicles. 

Profits for different CO2 limits correspond approximately to higher petrol costs. This is most 

evident for the highest assumed petrol price of US$ 2.00 per liter in every scenario, where the 

profit is almost identical for all CO2 limits. A plausible reason for this is that the changing 

composition of the fleet is influenced rather by energy and petrol prices than by the CO2 limit. 

This allows an optimization of profit independent of CO2 requirements, implying that electric 
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vehicles are deployed for economic reasons. It can be inferred that the consumption of each 

propulsion method as well as variable and fixed costs also have an influence on the composi-

tion of the fleet and the profit for carsharing organizations. This might influence single values, 

however, but not the overall tendencies presented. 

4.3 Generalizations of Results 

From the above benchmarks of the city of San Francisco, generalizations can be derived re-

garding the influence of various selected parameters ceteris paribus. As Speranza (2018) 

points out, electric vehicles are available on the market that now feature in several optimization 

approaches. Based on monetary and efficiency drawbacks compared with conventionally pow-

ered vehicles, a homogeneous electric fleet is not favorable for suppliers, e.g., carsharing 

organizations. When implementing a heterogeneous fleet, the advantages of conventionally 

powered vehicles (lower costs and a higher level of service) and electric vehicles (lower emis-

sions) can be combined. If electric vehicles become affordable and the required charging cycles 

decrease in duration and range-dependent necessity, a fleet could be replaced gradually up to 

a prospective pure electric (carsharing) fleet.  

Table 5 summarizes modifications with respective impacts on network, fleet, and profit of the 

carsharing optimization approach for a heterogeneous fleet. A generalization regarding differ-

ent clusters in the investigated area is not reasonable because the number of demand points 

and demand levels vary per analyzed cluster, as indicated in Figure 2, Table 3, and Table 4. 

In general, many demand points lead to a larger network, while high demand levels result in 

more vehicles for customer satisfaction. 

Table 5: Generalizations of Variations regarding Network, Fleet, and Profit 

Impact (ceteris paribus) of  

… on  

Number of 

stations 

Number of vehicles 
Profit 

In total Electric Petrol 

Costs for stations ↑ → → → → ↓ 

Costs for parking lots ↑ → → → → ↓ 

Costs for electric vehicles ↑ → → ↓ ↑ ↓ 

Costs for petrol vehicles ↑ → → ↑ ↓ ↓ 

Demand ↑ ↑ ↑ ↑ ↑ ↑ 

CO2-emission limit ↓ → → ↑ ↓ ↓ 

Price per kWh ↑ → → ↓ ↑ ↓ 

Price per liter petrol ↑ → → ↑ ↓ ↓ 

Max. distance ↑ ↓ ↓ ↓ ↓  ↑ 

 

The cost increase of stations and parking lots does not impact the network structure but de-

creases profit. Similarly, a cost increase for a particular type of vehicle does not influence the 

number of stations but decreases the number of vehicle types subject to increased costs and 

increases the number of vehicles with unaltered costs. A higher demand has an increasing 

impact on all of the above variables. With a lower average CO2 limit, the number of stations 

and overall number of vehicles does not change, whereas the number of electric vehicles 

increases and the number of petrol-driven vehicles as well as profit decrease. A rise in the 

price of petrol or energy has a comparable effect on the increase in costs for the designated 
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vehicle type. A higher maximum distance between supply and demand points eventually de-

creases the number of stations, increases profit, and slightly decreases the number of both 

types of vehicles. Computing and calculation times increase with larger clusters; thus, a gen-

eralization based on single parameters is not feasible. The demand satisfaction does not show 

clear tendencies; variations can be explained by the preset optimization gap and the underlying 

network differentiations. 

4.4 Discussion of Critical Considerations 

The preceding benchmarks demonstrate the applicability of the introduced optimization model 

for the profit maximization of a round-trip carsharing service equipped with a heterogeneous 

fleet. The model permits the integration of the characteristics of a city to solve the complex 

problem of determining optimal locations, vehicle compositions, and assignment to carsharing 

stations. As a result, the model provides a precise, practically applicable recommendation of 

station allocations within a city. 

Despite the latter, certain limitations and potential enhancements need to be considered. Our 

optimization model can be used for any city worldwide with the restriction of data availability 

for necessary demand estimate. The city should fulfill the described geographic and demo-

graphic characteristics for appropriate and successful application. In this paper, the evaluation 

of the model and its applicability was limited to the city of San Francisco. Additional tests for 

cities of different size, structure, and population are required to further validate transferability 

and generalizability. 

Our demand estimation based on demographic data supports realistic assumptions regarding 

the profitability of carsharing and can be adopted to other cities if the required data is available. 

Especially for cities with no actual carsharing data, this method allows carsharing organizations 

to evaluate the feasibility of offering their services in a designated area. Yet, the approach is 

simplified as it only considers the demand of the habitual abode of potential users and not the 

demand in business areas or at public transport stations due to a lack of data and research in 

this domain. Demand also depends on variables other than those discussed, including e.g., 

the price of carsharing, the structure of the city concerned, and the competitive market situa-

tion. While our model does not explicitly consider these aspects, a variation of 𝜆 can indirectly 

adjust the demand to lower values, e.g., when competitors are present. In addition, our model 

permits adjustments regarding the percentage of the demand, which has to be fulfilled to 

eliminate unprofitable stations due to low expected demands.  

Differently powered vehicles can be included in the optimization model with respective average 

emissions. A maximum limit of overall CO2-emission for the fleet can then be set to control the 

latter and achieve a certain sustainability level. This limit plays a crucial role in the calculations 

as it strongly influences the required number of alternatively powered vehicles and thus the 

overall profit of the carsharing organization. If the limit is set to a high value, only few alter-

natively powered vehicles are included in the fleet. In the future, it is expected that low emis-

sion levels will be supported or even required when offering a carsharing service. Today, such 

an emission limit is voluntary and typically used to support the environmentally friendly image 

of an organization. 

In our benchmarks, we use the two extremes of possible propulsion methods, namely petrol-

driven and electrically powered vehicles. We limit our analyses to only two methods to allow 

comparability of varying vehicle compositions. In addition, we assume 0 g/km CO2-emission 
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for electric vehicles, which require renewable energy not only for the charging process but 

also for the production of the vehicles. This represents a simplification of real life situations.  

Due to the requirement of charging infrastructures for electric vehicles, a station-based round-

trip carsharing approach is considered which takes into account all the advantages and disad-

vantages given in Table 1. One-way trips generate significantly more costs due to the require-

ment of additional charging infrastructures at each station as well as staff or user incentives 

for relocation. However, the implementation of a one-way option with higher prices to cover 

the additional costs could increase flexibility and attract additional users. This option may be 

limited to non-electric vehicles, as already offered by Zipcar (Zipcar, 2020). 

Further improvements of the set optimization gap of 3% are possible with additional computing 

time. As our model addresses strategic and tactical planning, computing time is not a critical 

aspect. However, the set optimization gap used in our benchmarks may lead to small biases 

between the results. 

5 Conclusions and Outlook 

Carsharing organizations offer their services in an increasing number of cities worldwide. With 

a growing public environmental awareness, the number of carsharing users continues to rise 

rapidly and the aspect of sustainability becomes more and more important. As a consequence, 

the integration of vehicles with alternative propulsion methods such as electric vehicles into 

existing fleets depicts an ongoing trend in this business sector. To successfully integrate differ-

ently powered carsharing vehicles in a city, station locations, their sizes, and an optimal num-

ber of different types of vehicles have to be determined. Round-trip modes are especially 

advantageous as they can be used in almost any city regarding their requirements concerning 

population density.  

We introduced a MILP to support the challenging task of network and fleet planning as well as 

optimization for heterogeneous fleets with the overall objective of profit maximization under 

consideration of ecological sustainability. We evaluated our model using the example of San 

Francisco. Our benchmarks reveal that the identification of realistic demand levels has a sig-

nificant influence as to whether carsharing is profitable or not. They further show that slight 

adjustments in parameters can have a notable impact on how to optimally disburse the car-

sharing network of a heterogeneous fleet. In doing so, we contribute to station-based carshar-

ing and its planning as well as its optimization. Further, we present a possibility to estimate 

the demand without having actual user data on hand. Although certain limitations have been 

identified, it was possible to verify the applicability and usefulness of the optimization model.  

Benefit could be drawn from more detailed empirical evaluation in this field; as demand rep-

resents the most crucial factor to success, additional information regarding typical carsharer 

and support for the currently used aspects could further validate and enhance our approach. 

The optimization model itself could be refined by adding aspects not yet considered, such as 

the implementation of additional multi-mobility constraints, demand-related prices, or a one-

way option including relocation procedures. We emphasize that the potential of including al-

ternative propulsion methods in carsharing applications is considerable, as this approach 

serves to increase sustainability while maintaining profitable installation. In conjunction with 

further enhancements, our work can therefore contribute to supporting a cleaner environment 

and a greener future. 
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