

IWI Discussion Paper Series
4 (May 20, 2003)1
ISSN 1612-3646

Automatic Extraction of
Derivative Market Prices

from Webpages
using a Software Agent2

Patrick Bartels3 and Michael H. Breitner4

1 Copies or a PDF-file are available upon request: Institut für Wirtschaftsinformatik, Universität Hannover,

Königsworther Platz 1, 30167 Hannover (www.iwi.uni-hannover.de).
2 This paper summarizes first results of a work in progress. A final version of this paper will be submitted

to "The Journal of Finance" in summer 2003.
3 Research fellow and lecturer (bartels@iwi.uni-hannover.de).
4 Full Professor for Information Systems Research/Business Administration (breitner@iwi.uni-hannover.de).

Table of contents

I. Introduction... 1

II. Derivative market prices..................................... 2
A. Neural networks in finance research 2
B. Derivative market prices 4
C. Underlying data... 6

III. Agent PISA .. 7
A. Agent paradigm... 7
B. Requirements .. 9
C. Choice of a programming language 11
D. Software-architecture .. 17

IV. Agent testing .. 21
A. Test specifications ... 21
B. Test procedure... 22
C. Results... 24

V. Conclusions .. 27

References.. 29

Automatic Extraction of Derivative Market Prices from Web-

pages using a Software Agent
Patrick Bartels1 and Michael H. Breitner2

Universität Hannover, Institut für Wirtschaftsinformatik, Königsworther Platz 1,

D-30167 Hannover, Germany

Some current research of derivative pricing is dedicated to artificial neural networks to gener-
ate market prices (see Breitner (2000 and 2001)) instead of analytical prices developed by
Black, Scholes and Merton (1973) or Cox, Ross and Rubinstein (1979). Needed data are usu-
ally taken from commercial finance databases. This paper presents the software agent PISA3
extracting quotes from webpages to generate cost free quote databases. Such databases pro-
vide time series for the training of neural networks. Extrapolating series with neural networks
enables all kinds of forecasting. Interpolating data obtained enables, e. g., a comparison of
derivative prices from different issuers and a synthesis of market price functions. This paper
presents a comparison of selected programming languages to find the most suitable for the
given tasks. The components of PISA are described in detail. The paper closes with examples
for the extraction process.

Keywords: Software agent, market prices, derivatives, artificial neural networks.

I. Introduction

Increasing importance of foreign currency transactions requires an appropriate hedging
against possible risks. This gets more and more important since the volatility of the five big-
gest currencies is still increasing. The uncertainty about exchange rates makes handling of
future contracts difficult. Using options and other derivatives enables hedging against upcom-
ing risks by redistributing them to other agents. Therefore both sides need a reliable derivative
pricing model. Today's pricing models mostly base on the Black/Scholes/Merton-model or the
Cox/Ross/Rubinstein-approach. These models depend on some unrealistic assumptions, e. g.
regarding true-market-conditions. Alternative current research focuses on using artificial neu-
ral networks to estimate market prices instead of analytical prices. This approach needs a suf-
ficient dataset for training the neural networks. The dataset is usually taken from commercial
databases which must be paid. Here, an alternative approach to get this input dataset using
software agents extracting the information from the Internet for free is presented. Beside for

1 Research fellow and lecturer, email: bartels@iwi.uni-hannover.de, phone: ++49 511 762-4979, fax: ++49 511 762-4013.
2 Full professor for Information Systems Research and Business Administration, email: breitner@iwi.uni-hannover.de,

phone: ++49 511 762-4901, fax: ++49 511 762-4013.
3 PISA = Partially Intelligent Software Agent

2 P. Bartels and M. H. Breitner

market prices neural networks can extrapolate the extracted time series, i. e. neural networks
can forecast future values.
Not every programming language is comfortable for realizing such agents. Several selected
languages are compared to find the most capable one. Each one is considered because of its
individual attributes.
The presented software agent uses simultaneously executed threads to request and receive
specified websites which contain the needed information. This information is provided on
several not password protected Internet websites. In order to assure correct data each deriva-
tive's quote is extracted redundant from several websites. These websites usually are written
in Hypertext Markup Language (HTML). The website's source code is received and processed
to extract this information by exploiting the fact that the needed information pieces are each
contained in a specific HTML-Tag. As HTML is developed for human interaction and not for
machine transaction this requires a new approach to identify the wanted information reliably
within the source code. This paper shows how information pieces can be identified reliably. A
reliable and powerful tool with which a gratis dataset for training neural networks can be col-
lected is build. The tool has been tested successfully by extracting values from over 180 web-
pages at the same time.

II. Derivative market prices

A. Neural networks in finance research
Neural networks are a very popular technique in financial market research. Many publications
deal with possible applications of neural networks in financial markets, see Azoff (1996), Re-
fenes (1996), Vemuri and Rogers (1994) and Zirilli (1997). Artificial neural networks are in-
formation-processing systems inspired by the way the densely interconnected, parallel struc-
ture of the mammalian brain processes information. Artificial neural networks are mathemati-
cal models that emulate some of the observed properties of biological nervous systems and
draw on the analogies of adaptive biological learning. That is why neural networks sometimes
are called learning networks. Key element of the artificial neural network system is the novel
structure of the information processing system. It is composed of an, eventually large, number
of highly interconnected processing elements. These elements are analogous to neurons and
tied together with weighted connections analogous to synapses. For further information about
neural network's functionality, see Anderson (1997), Gallant (1995), Hecht-Nielsen (1994)
and Hertz, Krogh and Palmer (1996).
Using neural networks mathematically means optimization. The input data are processed in a
special way by the net. The network returns a mathematical function

 fapp(x ; p) (1)

as result. This function depends on a vector x that contains the input data and a vector p that
contains the arbitrary network parameters. The returned function approximates a correlation
of the input variables. With this function either future values can be extrapolated or missing
values within a discrete series can be interpolated. To estimate the function's quality approxi-
mated and desired output data are compared. As reference either a dataset with validated data
or a known reference function

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 3

 fref(x) (2)

is used. The calculated error

 ε(fapp(x ; p) ; fref(x)) = fref(x) - fapp(x ; p) (3)

should be as small as possible after the neural network training. In order to minimize ε, the
network tries other input/output-relations and compares the results again. If ε is less than be-
fore the new function is accepted as the currently best one. Otherwise the function is dis-
carded and another one is tried. The described process is a kind of a learning process. For de-
tails regarding the training process, see Breitner and Bartelsen (1999), Breitner (2001) and
White, Gallant, Stinchcombe and Wooldridge (1992).
The described learning process is utilized for different kinds of applications. Recent financial
market research concentrates on two common application ranges. Forecasting time series us-
ing neural networks has been discussed for many years now. The usual aim is to generate a
mathematical function that predicts future values of the underlying time series. For the neces-
sary training neural networks usually need a large dataset with a dense time series, e. g. de-
rivative prices or interest rates. The network generated mathematical functions usually are
validated using their market prices as reference. The needed data usually is taken from com-
mercial databases. Price forecast is an example of extrapolating time series with neural net-
works. Second common application range is pricing derivatives. Today's analytical methods
use several estimated variables. The derivative prices of different issuers usually are not
equal. In cases where highly accurate prices are needed, neural networks can be used to gen-
erate market prices instead of analytical prices. Informative solutions are made by Hutchin-
son, Lo and Poggio (1994), Breitner (2001), Breitner (1997) and Breitner and Ambrosius
(1999). The outcome of the network training process is a function that interpolates input
prices. Changing the input variables market prices are generated for each variable combina-
tion without any estimation. As input data time price series of historical prices are needed.
The series have to be as dense as possible and must not have large data gaps.
For optimizing the output data both forecasting and market price generating applications need
validated data as a reference. For functional correctness the input data have to be correct and
the time series must be dense. Those data usually is bought in databases. Financial service
providers, e. g. Bloomberg4 and Reuters5, buy the data directly from stock exchanges and re-
sell them. Such databases usually are very expensive. An alternative approach is to get that
information from the Internet. Many websites publish current or time delayed option and de-
rivative prices cost free. E. g., most German warrant issuers publish their latest prices on their
own websites. Further sources are financial services company's websites. Most websites do
not offer real-time prices but this is not necessary to get a dense price/time series. Neural net-
works are trained with historical series. The needed pieces of information can be automati-
cally collected using autonomously working software. This program, called software agent,
stores the data in a database. Most gratis accessible websites do not offer all needed data. Us-
ing them for information gathering complemental information from other websites can be
extracted and merged.

4 Bloomberg web address: http://www.bloomberg.com
5 Reuters web address: http://www.reuters.com

4 P. Bartels and M. H. Breitner

Visitors of financial websites can only see the currently published price. It is not possible to
check the prices' up-to-dateness or its correctness. The user usually has no access to the un-
derlying data and he is limited to the given functions. In addition to the reduced functionality
the user does not know anything about the webpage's reliability.
Beside neural network training and evaluating website reliability a program that continuously
collects data from webpages can be used to compare prices of derivatives from different issu-
ers. Comparing the extracted issuer's prices enables to differ cheap and expensive derivatives.
Primary aim of this paper is to show a possibility to extract data from redundant websites
automatically and to build a reliable database. This database will provide the neural network
training data. With the presented approach it is possible to create any kind of time series from
web published information. Here, data for a neural network input dataset to generate deriva-
tive market prices are collected. Basically all derivative kinds can be extracted. To generate a
dense time series such an extraction approach is inappropriate for thinly traded derivatives or
newly created derivatives. Here, German options are chosen as example. To achieve the men-
tioned goals, the partially intelligent software agent PISA is developed. The agent enables
achieving both aims, extracting several stock, option or any other derivative prices efficiently
and evaluating the offering websites. The program loads specified webpages, extracts the de-
manded data and stores them on computers in formats that can be easily further processed, see
Figure 1. For example files formatted with the eXtensible Markup Language (XML) can be
used which can be easily imported into databases, see Figure 2 for the complete process. The
needed pieces of information are derived from the option price influencing variables de-
scribed in the next subsection.

B. Derivative market prices
Options are traded at an organized exchange since 1973. Since then there has been a growth in
option markets and today they are traded all over the world and around the clock by banks
and other financial institutions. For details regarding derivatives, especially options, see Hull
(1999). Since the beginning Fischer Black, Myron Scholes and Robert Merton were looking
for methods to price stock options. They developed a model that is still influencing traders
who both price and hedge options. The importance of the so called Black/Scholes-model
(Black and Scholes (1973) and Merton (1996)) was recognized when Black and Scholes were
awarded the Nobel Prize in 1997. Since the late seventies three other scientists, John Ross,

Figure 1
Schematic extraction process

The figure shows the schematic extraction process. First the webpage that contains the
wanted information is requested at a webserver. Each webpage has a unique web address,
called Uniform Resource Locator (URL). The webserver sends the requested file to the agent.
The received source code is processed. To identify and extract the wanted information a reli-
able method has to be realized that can handle all most common sources of errors. The ex-
tracted information is saved. Depending on further application it is stored in text files or da-
tabases.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 5

Stephen Ross and Mark Rubinstein, started research on option pricing (Cox and Ross (1976)).
In contradiction to Black, Scholes and Merton they used a numerical method for pricing more
general derivatives. The so called Cox/Rubinstein-model is also widely spread.
Common to both models is that the correct option price is investigated by an op-
tion-underlying portfolio with risk-free profit. The theoretically fair option price pBS

(Black/Scholes) depends on
- underlying price s,
- strike price b,
- time to expiration r,
- risk-free interest rate ir to expiration and
- future volatility σS of the underlying price measured by its annualized standard devia-

tion of percentage change in daily price.

Figure 2
Information extract ion process

The needed information usually is published in websites with a table structure like shown be-
low. The way the internet browser displays information is usually described with the Hyper-
text Markup Language (HTML). HTML is a plain text language that uses so called tags for
identifying an element. Most tags consist of a beginning tag and an ending tag. These two
tags bracket the displayed information. The name of the used HTML tag just describes the
way the content is displayed but not its context. The HTML source code can be processed with
special methods to extract the wanted information. The extracted information can be wrapped
in special tags that describe their content's context. Therefore usually the eXtensible Markup
Language is used. Such XML code comfortably can be stored in a database and is highly plat-
form independent.

6 P. Bartels and M. H. Breitner

The model of Cox and Rubinstein depends on s, b, r and ir, too. In "contradiction" to the
Black/Scholes-model the future volatility is represented by the likelihood of rising and falling
of the underlying price s in each time step.
The two mentioned analytic pricing models both base on two problematic assumptions:
- First the markets are assumed to be efficient so that a prediction of the direction of the

market or an individual underlying is not possible.
- Second the future volatility σs of the underlying price is assumed to be accurately esti-

mated and is a priori known to seller and buyer of an option.
As a result of estimating the volatility in both models, σs, i oscillates erratically and neither the
Black/Scholes model nor the Cox/Ross/Rubinstein model captures option market conditions.
In particular the every important option price sensitivities (option Greeks)

 *p
s∂
∂

=:∆* , *2 p
s∂
∂

=:Γ* , *p
r∂
∂

=Θ :* and ** : ∆=Ω
*p

s
 (4)

usually are inaccurate. These problems do not appear when instead of an analytical model
market prices are used. The generation of market prices depends on historical and actual
prices of independent options. For details of the option pricing process with neural networks,
see Breitner (1999) and Hutchinson (1994). In contrast to the theoretical pricing models high
accurate neural networks can learn true market pricing of options and warrants. Like the theo-
retical option price

 pBS(s, b, r, ir, σs) (5)

or

 pCRR(s, b, r, ir, σs) (6)

the market price

 pR(s, b, r, t) (7)

depends on the permanently available underlying price s, strike price b and time to expira-
tion r. But instead of ir and the artificially estimated σs the permanently available trading day t
is used as direct input for the pricing model is used (Breitner (1999)). From these variables
the pieces of information to extract are derived.

C. Underlying data
To generate market derivative prices it is necessary to extract specified information from the
websites. The influencing variables for each price/time combination are mainly:
- Derivative price that is published on the webpage including bid- and ask-price if available,

and
- related date and time of the price.
The price related date and time are extracted because in most cases the published prices are
not real time prices. The extraction's point of time can not be used instead. The time to expira-
tion is calculated from the extracted time posterior and can be expressed in minutes to expira-
tion.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 7

All other derivative attributes like expiration date or strike price are known and are not time-
dependent. They can be a priori or a posteriori given by the user. Extracting this static infor-
mation makes it easier to handle the extraction process. Eventually existing errors in linked
webpages are noticed and identified. A common error is a wrong or incorrectly allocated op-
tion's security identification number. The agent automatically extracts static information as
well as dynamic information. The neural network does not need this information for generat-
ing market prices but to identify a certain price time combination it is reasonable to extract
them as well. Since the webpages of a website normally are identically formatted the extrac-
tion task configuration is equal as well. User's handling of the agent, especially the configura-
tion, is much easier if only the web address (URL = uniform resource locator) has to be
changed for each derivative without specifying any static information. An URL is an explicit
and unique address of a webpage.
The following static information pieces are extracted:
- Security identification number,
- expiration date and
- strike price.
Here, German options are extracted. The in Germany used German security identification
number (Wertpapierkennnummer = WKN) has 6-digits. Instead other international standards
can be used as well. The related pattern just has to be modified.
Usually training data has to be available in a plain text file to be usable for the neural net-
works. The agent has to support data storage in a text file directly or the ability to store them
in a database which can export plain text files.
Important is that as training dataset not only frequent prices of one single option are needed.
Many different but comparable option prices from several issuers must be collected. The un-
derlying asset has to be equal. Attributes like strike price and expiration date can differ.

III. Agent PISA

A. Agent paradigm
The mentioned aim is achieved by using software agent technology. Pattie Maes (1994) de-
veloped one of the first software agents with the aim to reduce work and information overload
through agent technology. Primary advantage of using an agent instead of a person is that
agents are much more effective than employees and that they can work 24 hours a day and 7
days a week (except breakdowns and maintenance work). In addition to effectiveness artificial
agents can work more efficiently. Where a human employee requires regular payment for
daytime and extended benefits off the regular hours of work an agent contents itself with elec-
tricity. Agents can handle dozens of extraction operations per minute automatically. Being
able to work a longer period of time with lower costs and their higher efficiency make soft-
ware agents qualified for webmining tasks.
There is no general accepted definition of the term software agent although the differ-
ence between normal programs and software agents has been discussed intensely for
many years now (Franklin and Graesser (1996), Bradshaw (1997)). A common charac-
terization was disposed by Jennings and Woodridge (1995). Their definition is the origin
for almost all current research on agent technology. Accordantly an agent is a represen-

8 P. Bartels and M. H. Breitner

tative which works on behalf of a person. Thereby it has the following attributes: Auton-
omy – The agent should be able to execute the assigned tasks on its own without any
callback. Social behavior – Agents interact with other agents and at least with the user.
Ability to react – Perception of the system environment the agent is "living" in and the
ability to react on basis of more or less precisely defined decision patterns. Conscious-
ness – An agent does not only react on events but is proactive. The hardest to realize
attribute certainly is the last one. The first three attributes are much easier to achieve.
Consciousness is reserved for so-called high-level agents. The proficiency of the four
characteristics depends on the agent's aims. Here, the agent has to receive and process
webpages automatically. Caglayan and Harrison (1997) and Murch and Johnson (1998)
present an overview of existing agent applications. Autonomy is required inasmuch as
the program has to work over a long period of time without necessary user interaction.
User interaction is however necessary for configuration. This requires only little social
behavior. The agent has to react on the perceived situation. Consciousness is not neces-
sary since all necessary decisions can be made using hard coded rules.
There are miscellaneous levels of agent intelligence. The user predefined information
extraction from a website requires only minor agent intelligence. A case differentiation
within the program code is sufficient because all possible cases can be planned. The de-
cisions the agent has to make are which text to extract and what to do if the pattern was
not found. As the structure of the processed webpages is known in advance the agent
just has to filter the user specified pattern without "thinking". All situations appearing
unknown can be handled by standard decision rules. This does not suffice to call the
agent intelligent. The presented agent is called a partial intelligent agent and its intelli-
gence will be further developed.
The development process equals the standard software development process. The four
main process phases are illustrated in Figure 3. The analysis phase accords with the next
subsection where the requirements are analyzed. The conception phase consists of two
subsections where a programming language and agent's architecture conception are cho-
sen. The agent's testing is described in an own section.

Figure 3
Standard software development process

The figure schematically shows the standard software development process. The process con-
tains four separate phases. Within the analysis phase the future system environment is ana-
lyzed for software requirements. All necessary functions and abilities have to be identified
and summarized. From these identified requirements within the conception phase a theoreti-
cal software concept is developed. This concept contains components of the software and
their functionality. The conception phase contains a consideration which programming lan-
guage to use. The complete concept has to be carefully checked if it can accomplish all identi-
fied requirements. Within the realization phase the approved concept is programmed. After-
wards the program has to be tested under real life conditions.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 9

B. Requirements
This subsection describes the analysis phases of the agent development process. Like every
program the agent has to fulfill general and special requirements. The general ones are typical
for any software development project (Gomer and Budimir (2000)). The agent's performance
is determined as the needed time from website loading to saving the data. This period has to
be short enough to process an adequate number of extractions within an adequate small time
interval. Here, the interval length is determined by the interval period in which the paged are
requested. A standard interval is one minute for many applications. Usually at an office work-
place standard personal computer are used. The agent's performance shell be adequate for
such computers. An inefficient use of the executing system's resources results in decreasing
performance. The programming language must provide efficient methods to set unused mem-
ory free automatically. These methods are called "Garbage Collection". At least these features
have to be implemented manually.
In order to assure that the agent also accomplishes future performance needs the agent has to
be scalable. The number of extracted patterns should be limited only the system's power. The
agent has to be flexible enough to be executed on an increasing number of computers simul-
taneously, if necessary. The resulting data could be merged manually. It follows that the agent
must be applicable on as many operating systems as possible. The language the agent is pro-
grammed in has to be available for as much environments as possible as well.
Here, for the neural network market prices synthesis a continuous data flow is mandatory. The
agent has to be permanently available during trading hours. Furthermore, the hazard of break-
downs has to be minimized. In case an extraction task can not be processed the agent has to
notice this and terminate the task manually to set the system's resources free. To assure this
the programming language has to be as robust as possible.
The input data the neural network processes have to be correct. Only a few outliers are toler-
able. Therefore the agent's work accurateness is very important. One way to approve this is to
extract each price from several websites redundantly. A side effect is that in case of wrong
provided prices the agent can recognize and fix them.
Beside these general requirements there are the following additional ones, derived from the
required functionality. First the agent must have the ability to download webpages from the
Internet. This requires the support of the accordant Internet protocols by the programming
language. The most common protocols with which client computer communicate with
web-servers are TCP (Transmission Control Protocol), IP (Internet Protocol) and HTTP (Hy-
pertext Transfer Protocol). The support of these protocols is further mentioned as Internet
functions.
The addresses of the needed webpages mostly are not a priori known to the user. Investigating
them manually is uncomfortable. Beside requesting and loading HTML-files, the agent has to
be able to follow hyperlinks included in the source code of a given website. This behavior is
called crawling. Hyperlinks usually address external webpages directly by a complete URL.
Usually a relative hyperlink is used if the related webpage is located on the same webserver as
the referring page. Relative hyperlinks describe the position of the addressed page within the
web-server's file system. The server's Internet address is not contained in relative hyperlinks.
Webpages are only addressable with a complete URL. The complete web address is automati-

10 P. Bartels and M. H. Breitner

cally generated by the requesting program. The agent has to be able to handle both absolute
and relative hyperlinks. The downloaded file has to be analyzed and the user defined patterns
have to be extracted. Extracting hyperlinks and regular information patterns works equal. A
common way to implement such functions to use so called regular patterns. These are special
characters representing a characters pattern. Using special methods a text can be checked on
appearance of this pattern and the congruent parts can be extracted. Both Jeffrey Friedl (2002)
and B. Chng (2002) give a detailed introduction to functionality and usage of regular expres-
sions. Such expressions and methods should be supported by the programming language as
well. Alternatively simple string tokenizer functions can be used. These functions represent
the minimum ability of text manipulation the language has to support. Nevertheless these
string tokenizer functions would be neither comfortable nor powerful compared with regular
expressions.
Executing the user's task the results have to be saved, either in a text file or a database. The
simplest way to save the results is to put the data into a plain text file. This requires the ability
of file handling operations. Large amounts of data can be better managed and analyzed when
they are available in a database. It is reasonable to choose a language that supports database
standards like the ODBC-protocol (Open Database Connectivity) to assure compatibility.
ODBC is a widely spread standard protocol for external database access that is supported by
almost every current database. Using a database the necessary text file for the neural network
patterns comfortably can be created as a selection output from the database. This facilitates a
further preparation of the extracted data, e. g. invalid datasets can be filtered and outliers can
be determined.
Concerning the necessary performance the agent has to be able to execute several tasks simul-
taneously. This feature is called multithreading and is one of the most important requirements
the programming language has to comply. Without multithreading abilities the agent would
spend plenty of time with waiting. This decreases the necessary performance, see Figure 4.

Figure 4
Increasing performance by using simultaneous threads

Usually programs start a new task when the previous task is finished. Programs performance
can be measurably increased when simultaneous threads are used. Each thread is executed
beside others. Each thread consists of several tasks. Each task usually requires different parts
of a computer. To assure efficient use and avoid idle time these components can execute tasks
of other threads. Here, efficient usage of a computer is a very important requirement for
processing several hundred webpages within short period. An insufficient number of web-
pages can result in a gap in the time series. Such a gap must not appear if the data are used
for training neural networks.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 11

The agent has to be able to start these threads at user specified times, i. e. timer functions are
needed.
An independent software-agent must not only run on one special platform to increase scalabil-
ity. Especially multiple operating systems have to be supported, at least both the UNIX and
Microsoft Windows families. Platform independency is a very important criterion, here.

C. Choice of a programming language
Choosing the best programming language is a task where an all-embracing comparison is im-
possible. Only the most popular and most powerful languages are considered, here. There are
others that might be capable as well. We restrain the view to the following languages which
will be considered because of their individual properties. A more general analysis of agent
technologies is given by Nwana and Woodridge (1997).
PHP
PHP (PHP: Hypertext Preprocessor) is an HTML-embedded scripting language originally
invented for realizing dynamic webpages. An informative introduction to PHP and its applica-
tions is given by Welling and Thomson (2003). The close relationship to the Internet and the
fact that PHP is provided for all current operating systems make the language interesting for
the web mining agent. The syntax is very similar to C, Java or Perl and makes it easy to learn.
A PHP program's source code is completely embedded in an HTML file. When a client com-
puter requests such a page, the web-server, web-server in terms of software, sends the parts
that are marked as PHP code to an interpreter-software called PHP-Parser. This interpreter-
software executes the script and sends the result back to the web-server that puts these parts
into the original website. This website will be send as response to the requesting client in pure
HTML. In case the PHP script is correct the client's browser receives a normal website.
PHP functionality, especially the possibility to generate graphical components on-the-fly,
makes it comfortable to create a graphical user interface embedded in a conventional
HTML file. The program can be executed from all over the world by an Internet browser and
runs on the webserver. This is an advantage and also a disadvantage. The necessity of a run-
ning webserver restrains the user in running the agent wherever he wants unless there is a
webserver installed.
Although the syntax for objects and classes has been improved over the years, there are im-
portant functions missing, e. g. the principle of overloading that increases the possibility of
reusing program code is still missing. PHP does not support any timing function. The only
way to start and end an agent's actions is to use external programs like the Windows Task
Planner or the Linux Crontab. A while/until-loop can be used to check the current time and to
decide whether to start an action or not. This uses plenty of a system’s resources just to check
the time every few milliseconds. This would affect the agent's performance negatively. An-
other disadvantage regarding the performance is the missing multithreading support. Only one
task can be executed at a time and makes the system not capable to fulfill the given task of
extracting about 100 warrant prices every minute. All other requirements like object based
orientation and support of the necessary Internet protocols are fulfilled. In summary, here,
PHP is not a capable language for a partly intelligent agent with the given task because of the
missing timer and thread functions.

12 P. Bartels and M. H. Breitner

JavaScript
The fact that PHP uses webserver capacity the agent is running on is disadvantageous.
JavaScript is a scripting language that uses the capacity of the client computer instead
(Flanagan (2001)). As well as PHP JavaScript is a popular scripting language that allows cre-
ating a graphical and ubiquitous user interface. A webserver is not necessary. A JavaScript
program's source code is similar to PHP embedded in the HTML source code but not inter-
preted on the server’s side. Java-Script is interpreted by the requesting browser. The fact that
the necessary interpreter software is implemented in nearly 100% of the current browsers and
their gratis availability for current operating systems provides the possibility to use the
browser as a graphical user interface without using a locally installed programming language.
In addition the necessary performance for multiple simultaneously agent executions can be
spread over several computers. This makes the agent independent from a single server.
JavaScript is not an object oriented but object based programming language and supports
some important attributes which allow a high programming code reuse. The most important
supported principles are encapsulation and inheritance. Overloading is not possible what con-
straints reusability.
Necessary protocols for requesting and receiving Internet webpages are supported as well as
methods to handle regular expressions. So far an agent for extracting information from the
Internet can be completely realized in JavaScript. But the language does not support any file
handling or database access method. This makes it unusable for a mining agent because a very
important part of the mining process is to save the extracted information for further handling.
Here, JavaScript is not a capable solution for programming a software agent.
Perl
The language Perl was developed in 1987 and is sufficient object oriented since version 5,
released last year. A compact introduction to Perl is published by Randy Reames (2002). For
more detailed information look at Schwartz and Christiansen (1997). Perl is a scripting lan-
guage whose interpreter software is running on the program executing system. It is optionally
possible to parse requested webpages by an interpreter program similar to PHP. This provides
the possibility to create a graphical interface using HTML files loaded over the Internet. In
difference to JavaScript and PHP this is an option and not a necessity. Since a script has to be
compiled on each executing system the solution of implementing it in a website is an advan-
tage. Otherwise the Perl interpreter software, which is available for all current platforms, has
to be installed on each system the agent is used on. This complicates usage.
Perl supports all necessary Internet protocols and regarded regular pattern methods. Extracted
data can be saved in text files as well as in databases since the ODBC standard is supported.
The most important difference to the languages mentioned above is multithreading support
including synchronization of the running processes. So, several tasks can be executed simul-
taneously without interfering each other.
The easiest way to realize a timer is using implemented methods of a language. Perl does not
provide such functions. Because of the popularity and the evolutional development for over
15 years many freeware scripts are available in the Internet. Using them makes it possible to
implement most of the missing functions. In case there are no Perl scripts for a special prob-
lem, C, C++ or Java code can be embedded in the Perl source code as well. The necessary

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 13

scripts are available for free. External scripts are usually not well documented and correct
functioning is usually not approved. As far as possible no external programs should be used.
Using threads it is necessary to be able to lock special objects for certified use, e. g. a writing
operation into a text file where the extraction results are saved. Only one access to a file is
possible at the same time. Only one thread may get access to write into a file at the same time.
Otherwise information could be lost or errors could occur. Such locking features are sup-
ported by Perl.
Altogether Perl can be considered as a capable language for realizing agents, here. The only
aspects confining this consideration is that timer functions have to be implemented by using
external programs and that Perl does not support an internal error handling. This would facili-
tate programming an independently working agent. Perl actually is a capable solution proved
through existing agents completely programmed in Perl. Tommie Jones (2002) documented
an example for a webmining agent on his Website.
Because of the mentioned constraints further high-level languages are considered. These have,
compared with scripting languages, more needed functions implemented inherently and are
more efficient. Regarded are C++, C# and Java. Visual Basic also is a very popular language
but because of the platform dependency, it is not considered. All considered languages facili-
tate loading webpages using the TCP/IP-standard and saving data in text files as well as in
databases using ODBC.
C++
The language C++ is a successor of the language C. Primary improvement is the complete
object orientation in C++. This includes inheritance, polymorphism and encapsulation. These
characteristics make the language very powerful and enable high code reusability. For more
detailed information, see Stroustrup (2000). Further improvements are advanced error han-
dling and possibility of method overloading. The language does not contain any method for
parsing source code. This has to be programmed manually. Although a lot of such modules
are available cost free in the Internet, this is not a target-oriented approach as their functional-
ity is not necessarily given. Another disadvantage is that external programs usually are not
well documented. For realizing such a feature manually C++ supports regular expressions as
well as less advanced string manipulation methods. So far the language seams to be capable
for the current aim and the affinity to C facilitates existing knowledge and program code re-
use written in C.
Simultaneously executed threads can only be realized in C++ by using external software
packages. These are usually not platform independent. This makes the agent platform depend-
ent. Maintaining independency means using different packages for each kind of environment.
In addition these packages usually do not provide timer methods. These can be implemented
by using externals packages as well. Most likely the cooperation of the timer and the thread
module would be difficult.
Summarized C++ is a capable language for realizing the agent in general. Platform independ-
ency is constricted if external software packages are used, since needed capabilities are not
included in standard C++. This is why this language is considered as improper, here.
Java
Java is a new language grown up with the Internet and is taken into consideration because of
two reasons. First Java was developed with a network oriented approach. Normally programs

14 P. Bartels and M. H. Breitner

only run on the computer they are installed on. Java programs can be executed on remote
computers without the necessity of a local installation. A graphical user interface is as easy to
realize as in a scripting language. This is the primary reason for considering Java. Secondly
remote execution requires a platform independent language design because in a network usu-
ally many operating systems are used. Since the extraction agent is intended to run on most
current operating systems this is an important feature. A practical introduction to Java and its
architecture is given by Bloch (2001).
Java works differently compared to the other languages mentioned above. Programs realized
in a conventional language are compiled directly into an executable file. Java splits this proc-
ess into two parts. First the compiler creates so called Java Byte Code of a program's source
code. This Java Byte Code can be transferred to any other computer where it is executed by
the Java Virtual Machine, a platform dependent interpreter software. The Java Virtual Ma-
chine is available for most current platforms. Platform independency is assured.
The network oriented approach provides the possibility to realize a graphical user interface
that can be remotely accessed. A graphical user interface is important for a comfortable han-
dling. Java program can be executed remotely in two ways. First it can be started by special
tools. These tools access the remote computer and pass the user interface to the evoking com-
puter. This technique withdraws the necessity of a running webserver for remote execution.
Second, in contradiction to C# or C++, Java programs can be integrated into a website. The
agent can be executed on a central server by starting it from a distant computer by opening the
website. No webserver is needed, since the program is executed by the Java Virtual Machine
included in most common browsers. The website envelops the program. Popular application
ranges are security sensitive applications, e. g. online banking solutions. Such webpages con-
tain so called Java Applets with which a user can handle his banking transactions securely.
Security has been a very important aim developing Java to avoid misusage. The language's
design enables the user to start the agent either remotely, with or without a webserver, or lo-
cally. Altogether Java is a very flexible language what assures adequate scalability, too.
Java provides all necessary functions. All current protocols for Internet use are supported. The
wanted patterns can be extracted by using regular patterns. For further information regarding
regular expressions in Java, see the website of Dana Nourie and Mike McCloskey (2002).
Results can be stored in files and databases. Java does not directly support ODBC but uses an
own approach called JDBC (Java Database Connectivity). It is possible to access databases
via ODBC because corresponding methods are included in the standard Java development kit.
In Java threads can be created by succeeding the Thread-object. The resulting objects can be
started and ended with special timer functions. Synchronizing running threads is possible as
well as locking specified objects in order to protect them from competing access. Java has, in
contradiction to C++, an internal error handling and a powerful garbage collection that auto-
matically sets unused memory free.
Altogether Java is a capable language for realizing the agent without any compromises. No
external programs have to be used. The language's network oriented origin enables an ade-
quate grade of scalability. If the agent needs more resources the tasks can be split and exe-
cuted on different computers. The capability is emphasized by a noticeable trend: Many
agent development environments are realized in Java. This shows that Java's qualification is

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 15

widely approved. Michael Petsch (2001) summarizes the most common development envi-
ronments for mobile agents.
C#
C# (pronounced "see sharp") is a high-level language developed by Microsoft to combine the
advantages of C++ and Java and to avoid their disadvantages. This makes C# interesting for
the given task. If Java is capable, C# might be even better. The language C# descends from a
project called J++, an effort of Microsoft to develop an own Java version until this was for-
bidden juridically. The closeness to J++ is the reason why the syntax of C# is very similar to
Java's. Java and C# also have almost identical functionality.
The most important advantage of C# is the relatedness to the Microsoft .NET-Framework. In
this Framework the source code is, similar to Java, not directly compiled into the executable
file but in a so called Intermediate Language. This is a processor and system independent
program code that is executed by a runtime environment. .NET is intended to enable compil-
ing not only C#-code but also any other language into intermediate code. Therefore programs
consist of components coded in different languages. This would increase the agent's extensi-
bility. In March 2003 the Framework does not support many languages and it is only available
for Microsoft Windows.

Table I
Comparison of the discussed programming languages (March 2003)

The agent's programming language must accomplish some necessary requirements, shown in
this table. The six considered languages are each checked for nine functions. The sign 8
means that the function is not supported, the token 9 stands for support. PHP and Java-
Script do not support multithreading and error handling functions. This constrains perform-
ance and accurateness. Both PHP and Java-Script are not capable solutions for program-
ming an agent. The language Perl does support multithreading. Error handling methods can
be programmed manually. For a scalable agent remote method invocation has to be sup-
ported which is missing at Perl. C++ supports all necessary functions except timer functions.
These can be realized by using free external program packages available in the internet
(missing does not really matter and the symbol is set in brace). Both C# and Java support all
necessary functions as well. C# only works with Microsoft Windows. Java's platform inde-
pendency is an important advantage. Here, Java is chosen for programming the agent.

Ø Functions | Languages Ö PHP Java-
Script

Perl C++ C# Java

Internet functions 9 9 9 9 9 9
Regular expressions 9 9 9 9 9 9
String tokenizer functions 9 9 9 9 9 9
Multithreading 8 8 9 9 9 9
Error handling 8 8 8 9 9 9
Timer functions 8 8 8 (8) 9 9
File handling 9 8 9 9 9 9
ODBC database support 9 8 9 8 9 9
Remote method invocation 8 8 8 9 9 9
Platform independency 9 9 9 9 8 9

16 P. Bartels and M. H. Breitner

The mentioned advantages approve usage of C# for realizing the agent. Although C# is as
capable as Java, it is not considered any further. Platform independency is not adequate and
the costs for Microsoft licenses are significant.
Choosing the best
Table I summarizes the most important properties of the discussed programming languages.
Which language the agent should be programmed in can not been answered objectively.
Apparently important requirements are not fulfilled by PHP and JavaScript. For the third
scripting language Perl the missing garbage collection, timer classes and uncomfortable error
handling constrict its applicability. Nevertheless Perl is a capable language for realizing
agents in general. Although Perl is, like mentioned above, a capable possibility it is not con-
sidered any further because C++, C# and Java are superior.
The most important argument in favor of C++ is productivity. If there are existing programs
written in C++ they can be reused with minor modification. The syntax of C++ bases on C so
that all existing knowledge, in case there are C-programmers, can be used. Java is a com-
pletely new language with new syntax which makes it harder to reuse old programs or knowl-
edge. Since the agent is a completely new development this advantages do not single out Java
and C# because no compatibility to existing systems is necessary. Another counter argument
towards Java is that in the upcoming future agents should be as mobile as possible. This
makes an interpreter language like Java more capable than C or C++. This is the most impor-
tant reason why most existing development environments for mobile agent are realized in
Java.
Derogatory to Java is that its architecture slows down execution performance. The perform-
ance of C++ is more efficient. Java splits into compiler and interpreter parts. This results in an
overhead. The garbage collection mechanism in Java slows down the language as well. A
third reason for the overhead of Java programs are the used secure thread-libraries. These li-
braries stabilize multithreading programs and protect them from affecting each others nega-
tively. A secure runtime environment that can deal with multiple and simultaneously running
threads is strongly necessary for the agent as well as an efficient use of the available system
resources. Because of this little less performance is not as disadvantageous as an insecure and
inefficient agent. Missing security would decrease agent's autonomy because a user has to
check correct functioning frequently.
A current tendency in agent development is to enrich existing programming languages with
agent oriented libraries. A trend towards Java as the basic language is noticeable. Considering
the mentioned advantages and disadvantages of C++ and Java the latter is the better one, here.
Finally the choice has to be made between Java and C#. The idea behind C#, mostly the .NET
relatedness, usually makes it the better choice. Here, the agent has to run on Windows- and
Unix-Systems. Although Microsoft works on a runtime environment that is supposed to run
on every operating system the current version exists only for Windows. Java as programming
language for the agent is the best choice, here.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 17

D. Software-architecture
The agent PISA consists of five main components, see Figure 5. PISA starts with executing
the main module called PisaMain that initiates the extraction tasks defined by the user. The
configuration of these tasks is saved in a file with a specific syntax. Every object is collated to
an extraction object. In order to build precise objects out of the information in the configura-
tion file the component FileFilter reads one or more configuration files and returns their con-
tent as objects to the evoking PisaMain module. The PisaMain-object starts exactly one Pis-
aCrawler object for each URL. Per URL many information pieces can be extracted, e. g. the
current option price and it's update time. Each piece of information within a PisaCrawler ele-
ment is represented by a PisaGrabber-object. A PisaGrabber-object "grabs" the wanted in-
formation out of the webpages. To enable the PisaGrabber-object to extract data the web-
page's source code is processed by an HtmlDocument-object.
The PisaMain-object starts the PisaCrawler-objects with a one second time delay, each. Oth-
erwise it can happen, depending on the configuration, that a webserver receives dozens of
requests within less than one second if they are send out one after another without time delay.
This can result in a server crash or at least in not answering some of the requests. The latter
results from a standard mechanism that avoids webserver overload by ignoring requests when
a specified number of requests in a period is exceeded. If page requests are not answered this
results in information gaps in the generated time series. The delay time is adjustable in PISA's
configuration file.

Figure 5
Components of the agent PISA

PISA consists of five components. The component PisaMain initiates and starts all user de-
fined extraction tasks. The user made definitions are taken from the configuration file. The
configuration file is processed by the component FileFilter. The initiated tasks run as back-
ground threads. That means that all tasks can be executed simultaneously. Each task is repre-
sented by a single PisaCrawler object. These objects request the defined webpages and ap-
prove that during the crawling process no webpage is requested multiple times. Each received
webpage is process by the HtmlDocument component. This component parses the passed
website's source code. For each HTML tag an array is returned. These arrays are further
processed by the PisaGrabber component which identifies and returns the user wanted pat-
terns. After the extraction the PisaCrawler object saves the data either in a plain text file,
XML-file or a database.

18 P. Bartels and M. H. Breitner

PisaCrawler
A PisaCrawler-object accomplishes the given tasks in a specified interval. It can be con-
figured to start and end at a specified time in the future. Within this period it is executed
in user defined intervals. Without given interval it terminates itself after the first evalua-
tion.
Each object and each pass have the same operating cycle. First the object creates an
HtmlDocument-object that contains the passed URL's source code. In case the user
wants to extract information not only from the page identified by the URL but also from
webpages the basic site is linking to, the PisaGrabber-component calls a special routine
of the HtmlDocument-object. This method extracts all hyperlinks from the site and re-
turns them in an array. This array is successively processed in the same way like the
first URL. In order to avoid loading a page twice each requested URL is checked if it
has been already requested before. The ability to crawl through a website gives this
component its name. PISA works until the depth of webpages is reached.
Important is that each PisaGrabber-object is a single and independent thread. All started
PisaCrawler-objects can work simultaneously and independently. Each object can have
different parameters and properties. Here, this construction is very important because
otherwise PISA would waste a lot of time by waiting for requested webpages to be re-
ceived. PISA is requesting new webpages while waiting. This increases the performance
significant, see Figure 4.

Figure 6
Derivat ive quotes marked in HTML and XML

This figure shows an option's quotes marked in HTML and XML. The HTML source code is
structured as a table. The quotes are all marked with the same kind of tag that describes the
content of a table cell. The given parameters for the background color are equal. The extrac-
tion program gets no information about the meaning of a cell's content. Extraction of the
wanted pattern by its surrounding tag is not possible. This complicates extraction. Identifying
the wanted piece of information using a regular pattern is not target-oriented as well. E. g.
the pattern for the current price also matches the change rate. In the XML code each piece of
information is marked with an explicit XML-tag which gives information about the regarding
context. Even if several options are published within the same webpage each one can be
clearly identified by the given parameters. Here, parameters for the German security identifi-
cation number (Wertpapierkennnummer = WKN) and the option type are given.
01 <table>

02 <tr>

03 <td bgcolor=“95b4ff“ >Euro/Dollar Call option</td>

04 <td bgcolor=“95b4ff“ >782367</td>

05 <td bgcolor=“95b4ff“ >6,18 €</td>

06 <td bgcolor=“95b4ff“ >5,11 %</td>

07 </tr>

08 </table>

Example of a standard HTML-Table containing a derivative quotes.

01 <option wkn="782367" type="Euro/Dollar Call option">

02 <price>6,18 €</price>

03 <change>7.8.2002</change>

04 </option>

Example of a common XML-Tag containing the same derivative quotes.
�

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 19

HtmlDocument – parsing the source code of loaded webpages
The HtmlDocument component's major task is to request and analyze webpages. The
evoking class passes an URL. The related webpage is requested and, if the address is
valid, the source code is received. If several addresses are requested simultaneously the
crawling process performance can be increased. Therefore, the HtmlDocument-object is
realized as an independent thread.
An information extraction program is much easier to create, if all webpages were written
in XML. XML-tags usually describe which kind of value they contain. One single pat-
tern can be used to identify a wanted piece of information, see Figure 6. The current
standard is HTML. The markup language HTML is intended for human consumption
and not for machine interpretation. For HTML a two-stage process is necessary. First the
submitted source code has to be parsed. It is analyzed for each needed HTML-tag. For
each kind of tag one array is created. Every array-field contains the content of exactly
one tag of a kind. The tags are stored in order of appearance. This enables a successive
comparison of the array fields and the search for a special pattern.
In the second step, the needed pieces of information are identified. This is made by the
PisaGrabber-object.
PisaGrabber – Extracting patterns
The PisaGrabber component exploits the fact that many webpages are generated auto-
matically from an underlying database. The information from the database is usually
inserted into HTML templates. The structure of the webpages within one website is
equal or at least very alike and the HTML structure is fairly specific and regular. Such
texts are called semi-structured. A standard approach for extracting information from
semi-structured text is using delimiters for identifying needed pieces of information.
Software which accomplishes the tasks of extraction is often called wrapper because it
wraps the extracted information into delimiters. This enables comfortable further han-
dling. For more information about information extraction from the World Wide Web
using pattern, see Eikvil (1999).
The component PisaGrabber extracts the demanded patterns from a given
HTML-Document which is passed as an HtmlDocument-object from the PisaCrawler
module. The easiest way to extract a pattern is successive comparison of each array field
with the wanted pattern. The user could define the number of the searched pattern, e. g.
the second appearance of a 2-digit decimal number. This approach is neither comfort-
able nor capable because the number of appearance might change. If an option's bid-
price is appearance number two of a 2-digit number today, it can be the third one tomor-
row. This makes it hard to keep PISA working and finding the right pattern. Instead, a
different approach is chosen. Here, the number of a requested pattern is defined relative
to an anchor. This anchor is also defined by a pattern. An example clarifies this proce-
dure: A typical table with stock prices is shown in Figure 7. The last given price can be
found by using a pattern for a 2-digit decimal number. The current date can be used as
the anchor which can be identified by using a suitable pattern. The current price position
is the forth table cell after the current date. To specify the wanted information and its
anchor pattern regular expressions are used, e. g. the pattern for a 2-digit decimal num-
ber with exactly two decimal places is "[d]{2}[.][d]{2}".

20 P. Bartels and M. H. Breitner

Using this approach the user has to know four important things from the requested pattern:
1. The pattern of the requested information (In the example the price is a 2-digit decimal

number);
2. The pattern of the anchor (The current date is used in the mentioned example);
3. The number of tags between the anchor-pattern and the wanted information;
4. The kind of tag the patterns are formatted with, i. e. in most cases this is the standard

tag for table-cells "<TD>".
Optional the user can define names for the each extracted piece of information. This enables
storage in platform independent XML-files.
Beside the extracted information the loading time and the time needed for the parsing process
are stored in a special file by the PisaGrabber-object. This enables further analyzes regarding
the capability of websites for extraction jobs.
Resulting File Formats
Extracted data are internally stored in an array which makes it easy to save the results in plain
text files. The array is an associative array. It is possible to save the extracted data in
XML-files. The array-key is used as the XML-tag's name. The resulting XML-file only con-
tains the data and no information about the layout.
If the results are stored in a plain text file they are not separated by any characters. The col-
umns have equal widths. This makes it possible to read this file with every program without
care about eventually not supported delimiting characters.

Figure 7
An example of a webpage presenting the quotes of the

Siemens AG at the NYSE
Usually stock, derivative and warrant quotes are published in tables like pictured below. This
highly structured layout can be exploited to extract certain pieces of information. The sim-
plest way of identifying a piece of information is to compare the webpage's source code with a
specified pattern. In case of multiple appearances the number of the wanted information can
be specified. E. g. the last published price for the Siemens stock is the fourth appearance of a
two digit decimal number with two decimal places. This solution is comfortable but not reli-
able and in some cases not even effective. The number of a pattern's appearances changes,
e. g. when the lowest price becomes a one digit number the current price becomes the third
appearance. An alternative approach is to define a pattern by specifying its relative position
to a defined anchor. E. g. this anchor can be the current date 01/07/03 and the wanted pattern
is contained the fourth table cell right of this anchor. Only this cell is analyzed for appear-
ance of a two digit decimal number. In case the webpage's structure before or behind the
quote table changes this does not affect the extraction process. Only if the table's structure
changes the pattern has to be modified.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 21

Extracting data from several webpages leads to the problem that the display format of num-
bers and dates do most likely differ from each other; e. g. a date can be formatted like
02/22/03 or 02/22/2003 or 02/22 or in the European notation 22.1.2003. If for further
handling a database or spreadsheet program is used, these programs usually need a special
format to recognize the kind of information. Otherwise the data would be handled as ordinary
text. In order to assure this in the configuration file a special format for the extracted patterns
can be defined. PISA formats text, numbers and dates to facilitate result import in retailing
programs. Correct formatting is initiated by the PisaGrabber-object before the results are
saved.

IV. Agent testing

A. Test specifications
With the test correct functioning of PISA is proved. PISA has to be available during trading
hours, it has to work automatically and it has to be able to handle occurring errors. Secondly
the long-term test shows whether the developed extraction approach is reliable for extracting
the wanted information.
Analyzing the extracted data mainly the following questions are considered:
- Are the time series dense enough for neural network training?
- Are the prices published cost free in the Internet up to date (Only reliable and up to date

information is useful!)?
- Is every website equally capable to extract the wanted information? Are there differences

in information quality and regarding to the loading time?
In addition the following questions are considered:
- Are there any differences in the prices regarding the issuers of options and warrants?
- If there are differences in the prices regarding the issuers, are they constant and do they

occur for all options of an issuer?
Neural networks need dense time series which can be most suitable extracted from liquid de-
rivatives. Here, German options are chosen for the test. Some exchange rate options have a
comparatively high trading volume. Experiences of the authors shows showed that €/US-$
call warrants are suitable. Therefore they are chosen for the test, here. Options of three issuers
are considered. In the best case the issuer publishes his prices on his website. The price ex-
tracted from other webpages then can be verified easily then. The issuers "Citibank Group",6
"UBS Warburg"7 and "Deutsche Bank"8 publish their warrant prices on their websites. There-
fore and because they are the most important issuers in Germany their options are chosen for
the test.
If product prices are going to be compared, the products themselves have to be comparable.
Here, the products are German warrants, i. e. certified options, and their most important price-
defining properties are the expiration date and the strike price. Regarding to the expiration
date the 4 most important ones are chosen, each in the middle of the months March, June,
September and December. The exact date is not the same in all cases. The "Citibank Group"

6 Citibank web address: http://www.citibank.de
7 UBS Warburg web address: http://www.ubswarburg.de/
8 Deutsche Bank web address: http://www.deutschebank.de

22 P. Bartels and M. H. Breitner

dates their options seven days later than "UBS Warburg" and "Deutsche Bank". Relative dif-
ference is negligible small, here. Regarding to the strike price five prices between 0.90 and
1.10 US-$ are picked, see Table II.
Additionally to the issuer's webpages each option's price is extracted from two other financial
service providers who publish option prices on their website. "Comdirect Bank"9 and "On-
vista – The eFinance Company"10 are the biggest financial information websites in Germany.

B. Test procedure
The first test platform is a Microsoft Windows PC with an 800 MHz Pentium III and
256 MB RAM. The second run is accomplished on two Linux PCs with two
2.4 GHz XEON-Processors and 512 MB RAM. The reason for using two completely different
environments is to analyze PISA's limits. For the test specifications defined above minimum
interval and maximum possible number of tasks per minute are important.
In both cases the test job is started Monday morning at 6 a. m. and terminated at Friday
10 p. m. The extraction job can be paused during nighttime when no German options are
traded. Up-to-dateness is evaluated as well as differences in the webserver response time de-
pending on the time of day. To find out when the prices start to change in the morning and
stop to change in the late evening PISA runs 24 hours.
In order to evaluate loading time beside the wanted information patterns the time for request-
ing a website and for parsing are saved. It can be measured if there is any kind of connection
between these parameters. The needed time for loading and parsing a website should be short.
If the individual predefined intervals are too long the extraction is useless. Neural networks
need a dense output of warrant prices, here.

9 Comdirect Bank web address: http://www.comdirect.de
10 Onvista web address: http://www.onvista.de

Table II
Analyzed options with issuer, strike price and expiration date

The table shows all considered options, their German security identification number and the
related issuer sorted by expiration date and strike price. Four different strike prices are
chose. For each strike price four different expiration dates are considered. For each expira-
tion date and strike price combination three options are extracted. The option's issuers are
UBS Warburg, Deutsche Bank and Citibank. Deutsche Bank does not offer an option with an
expiration date in June 2003 and a strike price of 1.05 $. The option's quotes for the overall
59 options are extracted from the issuer's pages and additionally from the webpages of Citi-
bank and "Onvista – The eFinance Company".

Ø Exp. date Ø Issuer | Token Ø | Strike Ö 0.90 $ 0.95 $ 1.00 $ 1.05 $ 1.10 $

Mar 2003

UBS Warburg UBS
Deutsche Bank MAX
Citibank CIT

574297
782363
582577

574299
782365
582579

574301
782367
582581

574303
782368
582583

574305
782369
582585

Jun 2003 UBS Warburg UBS
Deutsche Bank MAX
Citibank CIT

574311
782388
640962

574313
782390
640964

574315
782392
640966

574317

640968

574319
689469
640970

Sep 2003 UBS Warburg UBS
Deutsche Bank MAX
Citibank CIT

638663
782465
640976

638665
782467
640978

638667
782469
640980

638669
782470
640982

638671
782471
640984

Dec 2003 UBS Warburg UBS
Deutsche Bank MAX
Citibank CIT

638677
782510
667962

638679
782512
667964

638681
782513
667966

638683
782515
667968

638685
689470
667970

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 23

All together almost 180 webpages are processed (5 strikes * 4 expiration dates * 3 issuers *
3 webpages = 180 extraction jobs). Because Deutsche Bank does not offer an option with the
strike of 1.05 US-$ and expiration date June 2003, there are exactly 177 webpages to evalu-
ate.
In both testing environments the jobs are initialized with a 1 second time delay. Shifting the
jobs increases the likelihood for all requests to be processed correctly. The actual interval is
changeable in the agent's configuration file.
On the 800 MHz machine all 177 tasks are executed on the same computer and the minimum
job interval is set to 210 seconds. Otherwise the jobs affect each other because of the limited
power. Using the two 2.4 GHz computers the jobs are split into 4 configuration files with

Table III
Example of a PISA output file

The table shows a cantle of a PISA output file generated during the test. All values are identi-
fied and saved correctly. In some cases the ask price is not published on the webpage. It is not
stored in the output file then. Empty values are not filled with replacement character because
this complicates further handling. Files like this output file can be directly transformed into
an input data file for neural networks.
�

Option
identification

token
Extraction time Ask

price
Expiration

date
Bid
price Update time Strike

price

German
security

identifica-
tion number

"574297ONV" 20.01.03 06:00:00 0.000 17.03.2003 0.000 01.01.2003 01:00:00 0.90 574297
"574299ONV" 20.01.03 06:00:02 1.000 17.03.2003 8.300 17.01.2003 21:58:00 0.95 574299
"574301ONV" 20.01.03 06:00:05 6.300 17.03.2003 3.840 17.01.2003 21:58:00 1.00 574301
"574303ONV" 20.01.03 06:00:07 2.330 17.03.2003 2.300 17.01.2003 21:58:00 1.05 574303
"574305ONV" 20.01.03 06:00:10 0.580 17.03.2003 0.550 17.01.2003 21:58:00 1.10 574305
"582579ONV" 20.01.03 06:00:12 0.770 17.03.2003 0.740 20.01.2003 05:42:00 0.95 582579
"582581ONV" 20.01.03 06:00:15 0.000 17.03.2003 0.000 01.01.2003 01:00:00 1.00 582581
"582577ONV" 20.01.03 06:00:17 5.460 17.03.2003 5.430 20.01.2003 05:44:00 0.90 582577
"582583ONV" 20.01.03 06:00:20 2.170 17.03.2003 2.140 20.01.2003 05:44:00 1.05 582583
"582585ONV" 20.01.03 06:00:22 0.530 17.03.2003 0.500 20.01.2003 05:35:00 1.10 582585
"782369ONV" 20.01.03 06:00:25 0.000 17.03.2003 0.000 01.01.2003 01:00:00 1.10 782369
"782368ONV" 20.01.03 06:00:27 2.360 17.03.2003 2.330 17.01.2003 00:08:00 1.05 782368
"782367ONV" 20.01.03 06:00:30 6.340 17.03.2003 6.310 17.01.2003 00:08:00 1.00 782367
"782365ONV" 20.01.03 06:00:32 1.020 17.03.2003 0.990 17.01.2003 00:08:00 0.95 782365
"782363ONV" 20.01.03 06:00:35 5.700 17.03.2003 5.670 17.01.2003 00:08:00 0.90 782363
"574297COM" 20.01.03 06:00:37 17.03.2003 5.46 17.01.2003 12:56:00 0.90 574297
"574299COM" 20.01.03 06:00:40 17.03.2003 0.93 17.01.2003 10:33:00 0.95 574299
"574301COM" 20.01.03 06:00:42 17.03.2003 6.08 17.01.2003 12:56:00 1.00 574301
"574303COM" 20.01.03 06:00:45 17.03.2003 2.20 17.01.2003 16:19:00 1.05 574303
"574305COM" 20.01.03 06:00:47 17.03.2003 0.52 17.01.2003 13:13:00 1.10 574305
"782363COM" 20.01.03 06:00:50 17.03.2003 5.47 17.01.2003 11:57:00 0.90 782363
"782365COM" 20.01.03 06:00:52 17.03.2003 0.80 17.01.2003 11:26:00 0.95 782365
"782367COM" 20.01.03 06:00:55 17.03.2003 6.08 17.01.2003 11:57:00 1.00 782367
"782368COM" 20.01.03 06:00:57 17.03.2003 2.21 17.01.2003 19:33:00 1.05 782368
"782369COM" 20.01.03 06:01:00 17.03.2003 0.53 17.01.2003 12:32:00 1.10 782369
"582577COM" 20.01.03 06:01:02 17.03.2003 5.54 17.01.2003 11:42:00 0.90 582577
"582579COM" 20.01.03 06:01:05 17.03.2003 0.83 17.01.2003 12:49:00 0.95 582579
"582581COM" 20.01.03 06:01:07 17.03.2003 6.18 17.01.2003 16:50:00 1.00 582581
"582583COM" 20.01.03 06:01:10 17.03.2003 2.23 17.01.2003 19:47:00 1.05 582583
"582585COM" 20.01.03 06:01:12 17.03.2003 0.56 17.01.2003 19:49:00 1.10 582585
"582585CIT" 20.01.03 06:01:32 0.58 17.03.2003 0.55 17.01.2003 21:55:00 1.10 582585
"582581CIT" 20.01.03 06:01:30 6.28 17.03.2003 6.25 17.01.2003 21:58:00 1.00 582581
"574297ONV" 20.01.03 06:02:00 5.680 17.03.2003 3.140 17.01.2003 21:58:00 0.90 574297
"574303ONV" 20.01.03 06:02:07 2.330 17.03.2003 2.300 17.01.2003 21:58:00 1.05 574303
"574299ONV" 20.01.03 06:02:02 1.000 17.03.2003 8.300 17.01.2003 21:58:00 0.95 574299
"574305ONV" 20.01.03 06:02:10 0.580 17.03.2003 0.550 17.01.2003 21:58:00 1.10 574305
"574297COM" 20.01.03 06:02:37 17.03.2003 5.46 17.01.2003 12:56:00 0.90 574297
"574301ONV" 20.01.03 06:02:05 6.300 17.03.2003 3.840 17.01.2003 21:58:00 1.00 574301
"582579CIT" 20.01.03 06:01:35 10.98 17.03.2003 10.95 17.01.2003 21:58:00 0.95 582579
"574299COM" 20.01.03 06:02:40 17.03.2003 0.93 17.01.2003 10:33:00 0.95 574299
"582583ONV" 20.01.03 06:02:20 2.190 17.03.2003 2.160 20.01.2003 05:46:00 1.05 582583
"574301COM" 20.01.03 06:02:42 17.03.2003 6.08 17.01.2003 12:56:00 1.00 574301
"582581ONV" 20.01.03 06:02:15 6.080 17.03.2003 6.050 20.01.2003 05:46:00 1.00 582581
"582577ONV" 20.01.03 06:02:17 5.480 17.03.2003 5.450 20.01.2003 05:46:00 0.90 582577
"782365MAX" 20.01.03 06:01:42 11.02 17.03.2003 10.99 17.01.2003 00:08:00 0.95 782365
"582579ONV" 20.01.03 06:02:12 0.780 17.03.2003 0.750 20.01.2003 05:46:00 0.95 582579
"782367MAX" 20.01.03 06:01:45 6.34 17.03.2003 6.31 17.01.2003 00:08:00 1.00 782367
"574303COM" 20.01.03 06:02:45 17.03.2003 2.20 17.01.2003 16:19:00 1.05 574303
"574305COM" 20.01.03 06:02:47 17.03.2003 0.52 17.01.2003 13:13:00 1.10 574305
"782363COM" 20.01.03 06:02:50 17.03.2003 5.47 17.01.2003 11:57:00 0.90 782363
"782363ONV" 20.01.03 06:02:35 5.700 17.03.2003 5.670 17.01.2003 00:08:00 0.90 782363
"782365COM" 20.01.03 06:02:52 17.03.2003 0.80 17.01.2003 11:26:00 0.95 782365
"582585ONV" 20.01.03 06:02:22 0.530 17.03.2003 0.500 20.01.2003 05:35:00 1.10 582585
"782369ONV" 20.01.03 06:02:25 0.580 17.03.2003 0.550 17.01.2003 00:08:00 1.10 782369
"782367ONV" 20.01.03 06:02:30 6.340 17.03.2003 6.310 17.01.2003 00:08:00 1.00 782367
"782368ONV" 20.01.03 06:02:27 2.360 17.03.2003 2.330 17.01.2003 00:08:00 1.05 782368
"782367COM" 20.01.03 06:02:55 17.03.2003 6.08 17.01.2003 11:57:00 1.00 782367
"782368MAX" 20.01.03 06:01:47 2.36 17.03.2003 2.33 17.01.2003 00:08:00 1.05 782368
"782369MAX" 20.01.03 06:01:50 0.58 17.03.2003 0.55 17.01.2003 00:08:00 1.10 782369
"782365ONV" 20.01.03 06:02:32 1.020 17.03.2003 0.990 17.01.2003 00:08:00 0.95 782365
"782363MAX" 20.01.03 06:01:40 15.70 17.03.2003 15.67 17.01.2003 00:08:00 0.90 782363
"582577CIT" 20.01.03 06:01:37 15.67 17.03.2003 15.64 17.01.2003 21:58:00 0.90 582577
"782368COM" 20.01.03 06:02:57 17.03.2003 2.21 17.01.2003 19:33:00 1.05 782368
"782369COM" 20.01.03 06:03:00 17.03.2003 0.53 17.01.2003 12:32:00 1.10 782369

24 P. Bartels and M. H. Breitner

about 45 jobs. Each file is executed by one of the overall four processors. Accordingly the
execution interval is set 60 seconds first.

C. Results
The extraction process works reliably. The wanted data are identified and stored correctly in
the specified output files. The layout of the output files is shown in Table III.
Performance
Test analysis shows that the 800 MHz computer is not powerful enough to execute all 177
tasks within the specified interval with the given parameters. The duration time of one cycle
in which all tasks are executed one time is much longer than the specified interval of 210 sec-
onds. The interval has to be set to over 5 minutes to keep PISA working correctly or the num-
ber of extraction tasks must be reduced. In contradiction the Linux computers with each two
2.4 MHz processors work pretty well. All prices are extracted correctly and the surveillance
files do not show any critical indication. For the given task PISA's performance is adequate.
The execution interval can be even reduced.
Considering the extraction duration
Considering the average extraction task duration a difference regarding the websites is notice-
able. Figure 8 shows the total time and time needed for parsing a website. The picture only
shows the average duration of the 2.4 GHz computers. The needed duration on the 800 MHz
computer is hardly significant. Most of the duration is needed for waiting because the com-
puter was running at its limits most of the time. The total time of Onvista and UBS Warburg
is less the half of the time need for the webpages of Citibank or Maxblue. One reason is that
the Citibank and Maxblue websites are larger than the others. This explains the higher parsing
time. Second reason is that the webserver is operating at full capacity. Then the response time

Figure 8
Average task duration

The figure shows the average task duration for each processed website. The websites of Citi-
bank and Maxblue are the slowest in both aspects, receiving and parsing webpages. These
pages are the largest and have the longest response time. A webpage's size directly affects the
needed parsing time. Both webserver response time and parsing time are very small at Com-
direct. This page still can not be used for generating a dense time series because it's inade-
quate up-to-dateness. The other four pages are a capable source for extraction.

0 sec.

25 sec.

50 sec.

Citibank Comdirect Maxblue O nvista UBS Warburg

Issuer

Average duration
per task

Total time

Parsing time

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 25

is higher. This thesis is confirmed by the fact that the needed time does not depend on the
option but on the time of day. During European nighttime less time is needed for response. A
correlation to the used processors is not possible as their speed is equal with 2.4 GHz.
Reliable functioning
Concerning reliability it is ascertained that PISA works well. All received webpages are proc-
essed correctly in both system environments. In some cases, all about less than 0.5 % of all
tasks, PISA requested the website but did not get any response from the server, even if the
page is requested multiple times. This does not cause a breakdown.
To validate correctness of the extracted data the saved source code can be examined. An indi-
cation for incorrect data is if an option's price charts from different webpages differ. If they
are equal it can be assumed that the information is correct. Figure 9 shows the chart of the
option with the German security identification number 782367 for the whole week. Comdirect
updates the prices only once a day. The reason is that they do not publish prices given by the
issuer but prices from the exchange. The update interval can not be predicted. An agent dys-
function can be excepted because PISA has successfully and correctly analyzed the website
within the whole week. The price is extracted correctly and stored with the current extraction
time and the time of the price which is published on the website. Nevertheless the static in-
formation is correct and their webserver is fast. Increasing PISA's efficiency this page can be

Figure 9
Extracted option price from three different webpages

The figure shows an option's time/price combination over the whole test period. The prices
extracted from Onvista and the issuer's page, Deutsche Bank, are equal as expected. The
price extracted from Comdirect is not. The price published by Comdirect is extracted cor-
rectly by PISA but is only updated seldom, here. This fact appears for all considered option
prices extracted from Comdirect. The website's reliability and up-to-dateness are not ade-
quate, here.

5,93 €

6,33 €

6,73 €

7,13 €

7,53 €

0 min. 1000 min. 2000 min. 3000 min. 4000 min. 5000 min. 6000 min.
Quote time in minutes since extraction beginning

782367, extracted from Comdirect
782367, extracted from M axblue (Deutsche Bank)
782367, extracted from Onvista

26 P. Bartels and M. H. Breitner

used for extracting the static information whereas other webpages are used as source of dy-
namic information like the price. Combining theses websites decreases processing time.
As expected, option prices are not updated at night. Referring to Figure 9 this is noticeable for
the Maxblue and Onvista curves by the straight lines during nighttimes. This applies to all
options and websites. The only difference is the exact trading period.
In case the data is correctly published and incorrect or no information is extracted, the only
source of error left is the user specifying incorrect patterns. To check this PISA saves the
source code of every received webpage. The user can look at the webpage's source code to
approve this. Here, all patterns are correctly matched. Altogether, up-to-dateness of the tested
websites, except Comdirect, is sufficient, here.
Figure 10 shows an example for a dense time/price combination generated by PISA. The war-
rant has the German security identification number 782367 and its price has been extracted
from the issuer's page and Onvista. Analogous charts can be created for all options. The prices
are equal at Onvista's and the related issuer's pages. Little differences base on the fact that the
extraction has not been made exactly simultaneously but with marginal time shift. This results
in different price/time-combinations. A second reason for not exactly identical charts is the
different website updating interval. The smaller the interval is the denser are the resulting
charts and the more they equal each other. Considering this analysis the Onvista website is a
reliable source for extracting dense time series, here. The data extracted from issuer's page
and redundantly from Onvista result in a time series with maximal 60 seconds between the
price time combinations. The series are dense enough to be used for neural network training.

Figure 10
Option's intraday price chart

The figure shows an intraday price time series of the option with the German security identi-
fication number 782367. The strike price 1.00 US-$ and expiration date March 2003. The
values are extracted from Onvista and the issuer's page. The issuer named the website Max-
blue instead of using their real name Deutsche Bank. The third source Comdirect is not pic-
tured because it's inadequate up-to-dateness. Prices of Onvista usually equal the prices pub-
lished by the issuer. Little differences are caused by marginal different extraction times.

5,97 €

6,07 €

6,17 €

6,27 €

6,37 €

6,47 €

0 min 200 min 400 min 600 min 800 min

Quote time - Minutes since extraction beginning (1 day)

782367 extracted from Maxblue
782367 extracted from Onvista

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 27

Figure 11 shows the intraday price of the Deutsche Bank option 782367 compared with the
accordant options of Citibank and UBS Warburg. Each price has been taken from issuer's
page to except wrong information of a third party provider. The chart pattern shows that PISA
has extracted the data correctly. Apparently, as expected, prices for comparable options are
not equal depending to the issuer. The reasons are differing assumptions in the pricing proc-
ess. Neural networks interpolate the underlying time series and predict market prices on basis
of given data. Considering the results the price difference depending on the issuer is not con-
stant. It changes irregularly during the test period.

Important information is missing on some webpages. On the Citibank website only the current
price with its according time is reliably provided. Static information like the expiration date
and/or the strike price can not be extracted accurately. Analyzing the stored source code
shows that these facts are not provided on the website. Nevertheless the prices are reliable and
the site is usable for this task, except that some information has to be extracted elsewhere.
Since these facts do not vary time-dependent this is not a problem.

All things considered not all websites are equally capable for the extraction job. There are
differences in up-to-dateness and regarding contained information. The internet provides a lot
of websites which offer free option prices. Using them to extract the needed information re-
dundantly enables the agent to build a reliable time series for neural network training.

V. Conclusions
Time series are used for many tasks. One important application area is neural networks. Neu-
ral Networks can generate mathematical functions that emulate relations between the input

Figure 11
Three opt ion's prices from their issuer's page

The figure shows an in traday chart of three options. The three options all
have the same s tr ike pr ice of $ 1.00 and the same expiration date
March 2003. The prices are extracted from their respective issuer 's page. As
expected the pr ices d iffer depending on the issuer. The d ifference is not
constant but changes with in the day.

5,97 €

6,07 €

6,17 €

6,27 €

6,37 €

6,47 €

400 600 800 1000 1200 1400

Quote time - Minutes since extraction beginning (18 hours)

574301, Issuer: UBS Warburg
582581, Issuer: Citibank
782367, Issuer: Deutsche Bank

28 P. Bartels and M. H. Breitner

variables. This is called supervised learning. Using these functions underlying time series can
be either extrapolated or interpolated. Possible applications are forecast of future values and
generation of derivative market prices. In both cases the underlying training data have to be
dense and reliably correct. Usually expensive commercial databases are used. The Internet
offers the needed data for free. Instead of a commercial database the needed data can be ex-
tracted from the Internet using the partial intelligent software agent PISA. Software agents are
programs that work autonomously in the name of a user and execute specified tasks. Here,
PISA extracts time series for neural network training from the internet. Compared to manually
extraction autonomous software agents reduce work and costs. Quality and efficiency of the
extraction process are increased.
PISA executes given extraction tasks in specified intervals defined in seconds, minutes, hoers,
etc. The executing system's power and the number of execution tasks determine the smallest
possible interval. To increase efficiency all tasks are executed simultaneously. Both aspects
assure efficient usage of the computer's components and network's transfer rate. As a result a
common desktop computer is sufficient to execute PISA. The agent can be used in most cur-
rent offices. Only for large extraction jobs a computer with two or more processors is recom-
mended to keep extraction intervals small. Alternatively several computers can be used simul-
taneously. The extraction tasks can be partitioned. The tasks are started and terminated timer
controlled. In most neural network environments both Windows and UNIX computers are
used. To avoid a restriction to only one operating system PISA supports both. To accomplish
the mentioned demands PISA is completely realized in Java.
Redundant extraction of information from several webpages prevents data gaps. Extracted
data can be stored in text files and databases using the ODBC interface. The text files are well
structured and can be easily used by neuro simulators. Databases have the advantage that data
can be further calculated, e. g. to filter inaccurate values or to merge different data sources. In
addition results can be saved in XML files. XML files are platform independent and can be
imported in almost every spread sheet program. Most financial analysis programs support
data import for XML files.
PISA works reliably and correctly. The redundant extraction process assures that the resulting
database is correct, with few exceptions, dense and has no data gaps usually. This has been
proved by several long term tests. PISA can work continuously and autonomously for many
weeks without user interference.
Legal restrictions constrain the usage of PISA for commercial aspects. Most website carriers
indicate that any commercial use of the published information is forbidden. For non commer-
cial use webmining tools are allowed. It should nevertheless be considered that frequent web-
page requests increase webserver utilization. For the webserver carrier this results in increas-
ing hardware costs. Agents like PISA should only be used in a way that no web service pro-
vider is disadvantaged.

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 29

References

Anderson, J. A., 1997. An Introduction to Neural Networks (MIT Press, Cambridge).

Azoff, E. M., 1996. Neural network time series forecasting of financial markets (Wiley, New
York).

Bartels, Patrick, 2002, Konzeption und Entwicklung eines intelligenten Agenten zum Internet
Content Mining, (Diplomarbeit, Universität Hannover).

Black, F. and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities, Journal of
Political Economy 81, 637 – 659.

9

Bloch, Joshua, 2001. Effective Java Programming Language Guide (Addison-Wesley, Bos-
ton).

9

Bradshaw, Jeffrey M., 1997, An Introduction to Software Agents, in Jeffrey M. Bradshaw, ed.:
Software Agents (Menlo Park, Cambridge and London).

9

Breitner, Michael H., 1999, Heuristic Option Pricing with Neural Networks and the Neuro-
Computer Synapse 3, Optimization 81, 319 – 333.

9

Breitner, Michael H., 2001. Nichtlineare, multivariate Approximation mit Prezeptrons und
anderen Funktionen auf verschiedenen Hochleistungsrechnern, (Habilitationsschrift,
TU Clausthal, Clausthal-Zellerfeld).

9

Breitner, Michael H. and M. Ambrosius, 1999, SQP-training of Perceptrons with the Neuro-
computer SYNAPSE 3 Applied to Fast Empiric Option Prices, in L. J. Cromme, ed.: Proceed-
ings of the CoWAN '98, 65 - 84 (Shaker, Aachen).

9

Breitner, Michael H. and S. Bartelsen, 1997, Optimal Portfolio Management through Forecast-
ing of Stronger Stock Price Changes with the Neurocomputer SYNAPSE,
TU Clausthal-Mathematik-Bericht 11, 15 p.

9

Breitner, Michael H. and S. Bartelsen, 1999, Training of Large Three-layer Perceptrons with
the Neurocomputer SYNAPSE, in P. Kall, ed.: Operations Research '98, 562 – 570 (Springer,
Berlin).

9

Caglayan, Alper K. and Colin G. Harrison, 1997. Agent Sourcebook: A Complete Guide to
Desktop, Internet, and Intranet Agents (John Wiley & Sons, New York).

Chng, B., 2002, Matchmaking With Regular Expressions, comp.
http://www.javaworld.com/javaworld/jw-07-2001/jw-0713-regex.html, downloaded 05/23/03.

9

Cox, John C. and Stephen A. Ross, 1976, A Survey of Some New Results in Financial Option
Pricing Theory, Journal of Finance 31, 2, 383 - 402.

9

Eikvil, Line, 1999, Information Extraction from the World Wide Web, Report No. 495, Nor-
wegian Computing Centre.

9

Flanagan, David, 2001. JavaScript: The Definitive Guide (O'Reilley & Associates, Sebasto-
pol).

9

30 P. Bartels and M. H. Breitner

Franklin, Stan and Art Graesser, 1996, Is It An Agent Or Just A Program – A Taxonomy Of
Autonomous Agents, comp. http://www.dbgroup.unimo.it/IIA/references/paper0.html,
downloaded 05/23/03.

9

Friedl, Jeffrey, 2002, Mastering Regular Expressions (O'Reilly & Associates, Sebastopol). 9

Gallant, S. I., 1995. Neural Network Learning and Expert Systems (MIT Press, Cambridge).

Gomer, Peter and Miroslav Budimir, 2000, Agentenbasierter Rentenhandel, Wirtschaftsinfor-
matik 42, 124 – 131.

9

Hecht-Nielsen, Robert, 1994. Neurocomputing (Addison-Wesley, Reading).

Hertz, J., Anders Krogh and Richard Palmer, 1996. Introduction to the Theory of Neural Com-
putation (Addison-Wesley, Reading).

Hull, John C., 1999. Options, Futures and other Derivatives (Prentice Hall, Upper Saddle
River, NJ.).

9

Hutchinson, James M., Andrew W. Lo and Tomaso Poggio, 1994, A Nonparametric Approach
to Pricing and Hedging Derivative Securities Via Learning Networks, Journal of Finance 49,
3, 851 - 889.

9

Jones, Tommie, 2002, Webmining with Perl, comp.
http://www.devshed.com/Server_Side/Perl/DataMining/DataMining.pdf, downloaded
05/23/03.

9

Meas, Pattie, 1994, Agents that reduce work and information overload, Communications of the
ACM 37, 30 – 40.

9

Merton, Robert C., 1976, The Impact on Option Pricing of Specification Error in the Underly-
ing Stock Price Return, Journal of Finance 31, 2, 333 - 350.

9

Murch, R. and T. Johnson, 1998. Intelligent Software Agents (Prentice Hall PTR, Upper Sad-
dle River).

Nourie, Dana and Mike McCloskey, 2002, Regular Expressions and the Java Programming
Language. Comp. http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/,
downloaded 05/23/03.

9

Nwana, Hyacinth S. and Michael Woodridge, 1997, Software Agent Technology, in Nwana,
Hyacinth S. and Nader Azarmi, eds.: Software Agents And Soft Computing (Springer, Berlin
and Heidelberg).

Petsch, M., 2001, Aktuelle Entwicklungsumgebungen für mobile Agenten und Multiagenten-
systeme, Wirtschaftsinformatik 2, 175 – 182.

9

Reames, Randy, 2002, What is Perl?, comp.
http://www.sysadminmag.com/tpj/whatisperl.html, downloaded 05/23/03.

9

Refenes, A.-P., 1996. Neural Networks in Capital Markets (Wiley, New York).

Schwartz, Randal and Tom Christiansen, 1997. Learning Perl (O'Reilly & Associates, Sebas-
topol).

9

Automatic Extraction of Derivative Market Prices from Webpages using a Software Agent 31

Stroustrup, Bjarne, 2000, The C++ Programming Language (Addison-Wesley, Boston). 9

Vemuri, V. R. and R. D. Rogers, 1994. Artificial Neural Networks: Forecasting Time Series
(Institut of Electrical and Electronic Engineers (IEEE) Computer Society Press, Los Alamitos).

Welling, Luke and Laura Thomson, 2003. PHP and MySQL Web Development (Sams publish-
ing, Indianapolis).

9

White, H., A. R. Gallant, K. Hornik, M. Stinchcombe and J. Wooldrige, 1992. Artificial neural
networks: approximation and learning theory (Blackwell, Oxford).

Woodridge, Michael and Jennings, Nicholas, 1995, Intelligent Agents: Theory and Practice,
Knowledge Engineering Review 10, 115 – 152.

9

Zirilli, J. S., 1997. Financial Prediction Using Neural Networks (International Thomson Com-
puter Press, London).

IWI Discussion Paper Series

ISSN 1612-3646

Michael H. Breitner, Rufus Isaacs and the Early Years of Differential Games, 36 p.,
1, January 22, 2003.

Gabriela Hoppe, Michael H. Breitner, Classification and Sustainability Analysis of e-
Learning Applications, 26 p., # 2, February 13, 2003.

Tobias Brüggemann, Michael H. Breitner, Preisvergleichsdienste: Alternative Konzep-
te und Geschäftsmodelle, 22 p., # 3, February 14, 2003.

Patrick Bartels, Michael H. Breitner, Automatic Extraction of Derivative Prices from
Webpages using a Software Agent, 32 p., #4, May 20, 2003.

