SiNED-Ancillary Services for Reliable Power Grids in Times of Progressive German Energiewende and Digital Transformation

Jonas Wussow¹, Davood Babazadeh⁶, Vanessa Beutel³, Sebastian Buchholz⁸, Stefan Geissendörfer³, Jana Gerlach⁴, Neelopal Majumdar⁵, Karsten von Maydell³, Anand Narayan⁶, Melanie Hoffmann¹, Lily Kahl¹, Thomas Leveringhaus⁵, Marc René Lotz¹, Alexandra Scheunert⁸, Payam Teimourzadeh Baboli⁶, Paul Hendrik Tiemann², Nils Huxoll⁶, Oliver Werth⁴, Carsten Agert³, Michael H. Breitner⁴, Bernd Engel¹, Lutz Hofmann⁵, Martin Könemund⁷, Michael Kurrat¹, Sebastian Lehnhoff⁶, Astrid Nieße², Hartmut Weyer⁸

¹Technische Universität Braunschweig, elenia Institute for High Voltage Technology and Power Systems, Braunschweig, all parties located Germany

²Carl von Ossietzky Universität Oldenburg, Department of Computing Science, Digitalized Energy Systems Group, Oldenburg

³German Aerospace Center, Institute of Networked Energy Systems, Oldenburg

⁴Leibniz Universität Hannover, Institute of Computer Science for Business Administration, Hannover

⁵Leibniz Universität Hannover, Institute of Electric Power Systems, Electric Power Engineering Section, Hannover ⁶OFFIS, Institute for Information Technology, Oldenburg

⁷Ostfalia - University of Applied Science, Institute of Electrical Systems and Automation Technology, Wolfenbüttel ⁸Technische Universität Clausthal, Institute of German and International Mining and Energy Law, Clausthal-Zellerfeld

Corresponding Author: Jonas Wussow, J.Wussow@TU-Braunschweig.de, (+49)531/391-7707

Abstract

Within SiNED research project, several members of the *Energy Research Centre of Lower Saxony* (Energieforschungszentrum Niedersachsen, EFZN) are working on various issues relating to the future provision of ancillary services and to future congestion management. The questions include energy technology, economic and energy law aspects as well as information and communications technology (ICT) and data. The investigations are based on Lower Saxony and the framework conditions there. The temporal focus of the investigations is the year 2030.

1 Introduction

In order to achieve climate targets, all sectors will switch to increased renewable share in the coming decades. For this reason, the electricity generation will increasingly be based on a large number of decentralized and fluctuating photovoltaic arrays and wind turbines. In conventional power systems, ancillary services (ASs) for the reliable operation of power grids were provided centrally by largescale power plants. In the transformed system though, these ASs have to be provided by a plenty of decentralized energy resources (DERs), *i.e.* distributed generators (DGs), renewable energy resources, loads, storage units and electric vehicles, which are highly distributed in the distribution grids. Thus, the information, communication and energy flow with and inside the distribution grid will therefore increase. This increases the need of grid operation management for provision of ASs from DER. This also leads to increased requirements regarding resilience of the digital transformation of the energy system, as well as to new demands concerning the economic and legal framework conditions of future electricity supply systems.

The joint research project *SiNED*, conducted by Energy Research Centre of Lower Saxony and consisting of nine reasearch areas (RA), is established in order to further develop the existing ancillary services to prepare for future power systems and to adapt these to new requirements and opportunities presented by digitalization and the progressing Energiewende. Solutions for a reliable future grid operation are developed and examined in an interdisciplinary way by several partners, which are all members of EFZN (see Figure 1).

Figure 1 Project overview