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Abstract 

Electric car sharing is a mobility alternative addressing the world’s growing need for 
sustainability and allowing to reduce pollution, traffic congestion, and shortage of 
parking in cities. The positioning and sizing of car sharing stations are critical success 
factors for reaching many potential users. This represents a multi-dimensional challenge 
that requires decision makers to address the conflicting goals of fulfilling demands and 
maximizing profit. To provide decision support in anticipating optimal locations and to 
further achieve profitability, an optimization model in accordance to design science 
research principles is developed. The integration of the model into a decision support 
system (DSS) enables easy operability by providing a graphical user interface that helps 
the user import, edit, export, and visualize data. Solutions are illustrated, discussed, and 
evaluated using San Francisco as an application example. Results demonstrate the 
applicability of the DSS and indicate that profitable operation of electric car sharing is 
possible.  

Keywords: Electric car sharing, decision support system, optimization model, design 
science research. 

 
 
 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301367278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 A DSS for Electric Car Sharing Optimization 

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 2 

Introduction and Motivation 

Over the last several decades, rising energy and vehicle ownership costs, sensitivity to environmental 
sustainability, and social responsibility have caused people to take advantage of transportation alternatives 
(Dedrick, 2010; Katzev, 2003). Car sharing is one alternative that can satisfy the mobility needs of the 
modern urban population. Besides the possible monetary savings that a car sharer can achieve, a change of 
the society toward access-based consumption instead of ownership is a decisive factor that positively affects 
the demand for car sharing (Shaheen and Cohen, 2013; Bardhi and Eckhardt, 2012). The environmental 
advantages of car sharing include a decrease in the shortage of parking, a reduction in the number and age 
of private vehicles, and a decrease in mileage per person (Alfian et al., 2014; Burkhardt and Millard-Ball, 
2006). Since electric vehicles cut down emissions and reduce noise as compared to conventionally powered 
vehicles, they are perfectly suitable for a car sharing concept and further enhance ecological sustainability 
(Shaheen et al., 2013; Lee et al., 2012). However, state-of-the-art electric vehicles are still associated with 
high acquisition costs, require a charging infrastructure, and have a limited range compared to 
conventionally powered vehicles. Theoretically these points work well with car sharing, yet only station-
based approaches can appropriately accommodate charging infrastructures and suitably account for range 
limitations and charging cycles.  

For car sharing organizations, the most critical success factor is the challenging task of positioning and 
sizing car sharing stations to reach the largest possible amount of potential users (Costain et al., 2012). The 
accessibility and the distance to users’ homes as well as to public transport stations play an important role 
in attracting potential users (Celsor and Millard-Ball, 2007). Moreover, different demographic and 
geographic characteristics such as high population density, shortage of parking, mix of public 
transportation uses, and the ability to live without a vehicle affect car sharing usage and need to be 
considered (Celsor and Millard-Ball, 2007; Cohen et al., 2008; Stillwater et al., 2009). These factors have 
to be addressed by decision makers when setting up a car sharing network. While trying to allocate the 
optimal number of stations and vehicles, the organizational objective of profit maximization must be kept 
in mind. Best practice so far appears to be a trial-and-error concept: stations are randomly opened and then 
monitored. If not frequently used, they are closed after a trial period. Otherwise they remain unchanged or 
the number of vehicles is increased. We suggest supporting the planning process with a web-based 
application that takes several important parameters into account. This tool enables decision makers to 
execute different scenarios and eventually find the optimal network for their specific application. In 
addition to its supportive function in implementing car sharing in an economically successful way, our 
approach helps achieve direct and indirect conservation of resources, and thus leads to increased 
sustainability. At the same time, it is part of the Green IS concept, as it applies an interaction of information 
technology (IT) and people to enable the optimization of processes and products and to raise resource 
efficiency (Watson et al., 2010; Butler, 2011). 

Our suggested decision support system (DSS) and the underlying optimization model are based on the 
model from Rickenberg, Gebhardt, and Breitner (2013). We modified and expanded their model to 
accurately forecast the expected demand and to maximize the profit of car sharing organizations. The 
graphical user interface (GUI) of the DSS helps decision makers import and edit data, set parameters, 
trigger numerical solving of the underlying model, and visualize optimization results. This enables instant 
validation, comparison, and assessment of results and scenarios. This is exemplarily demonstrated by 
means of a major city in the US and includes the creation of a specific dataset based on census data and 
local conditions. The described challenges lead to our research question: 

RQ: How can decision makers be supported in finding an optimal car sharing network of 
electric vehicles? 

To answer this question, the remainder of this paper is structured as follows: first the research background 
is described, covering our research design and related work about car sharing. In the next section, the 
optimization model is explained and formally noted. Subsequently, the DSS, which employs the underlying 
model, is presented. The applicability of the model is checked, benchmarks are performed, and the results 
are shown together with corresponding sensitivities. The next section discusses the presented model, DSS, 
and corresponding results, followed by the limitations and recommendations of our research. We complete 
our article with a conclusion and outlook regarding this field of research. 
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Research Background 

Research Design 

Methodologically our research is based on design science research (DSR) principles as proposed by Hevner 
et al. 2004. In contrast to behavioral science, the design science approach systematically seeks to create 
“new and innovative artifacts” (Hevner et al., 2004). This means it is most suitable for the tasks needed to 
be accomplished when creating, specifying, and evaluating a car sharing model, addressing both its 
relevance and its rigor. 

Regarding relevance, our work is motivated by the increasing demand for alternative transportation 
methods, e-mobility, and the associated decision making requirements. A current research project focusing 
on e-mobility provides further information and ensures the actual relevance and importance of the 
problem. The review of existing knowledge in the rigor cycle represents a second essential part of the 
research process (Peffers et al., 2007). We conducted a comprehensive literature review within the car 
sharing domain, including optimization models, demand estimations, and electric vehicles. Furthermore, 
we carried out a targeted review of the DSS and DSR domains. The design cycle is an iterative process that 
uses several build-and-evaluate loops, and revises the design artifacts until a feasible level is reached. We 
conducted several cycles to ensure that environmental requirements, scientific methods, and existing 
expertise were all taken into account. As final artifacts, a further enhanced optimization model and the DSS 
“OptECarShare 1.5” emerged. We tested the DSS and the underlying optimization model extensively to 
enable proper documentation and publication of research results. The application of DSR in the context of 
our research as described in the above is visualized in Figure 1: 

 

Figure 1. Design science research as applied in our approach based on Hevner (2007) 

Car Sharing and Related Work 

Car sharing is a transportation strategy that offers the usage of vehicles in an organized manner by paying 
variable trip-dependent fees. After registration at a car sharing organization (CSO), users can utilize any 
available vehicle of the fleet as long and as often as required to satisfy their mobility needs. The payment 
structure differs between organizations, and is usually regulated via varying minute-by-minute fees. Some 
organizations charge additional fees for mileage or minimal monthly basic fees. In any case, car sharing 
users pay only for trips they actually take and have no unexpected costs such as maintenance, repairs, or 
continuous costs such as taxes. 

Car sharing organizations offer their services in three main variations. The free-floating system enables the 
user to pick up and drop off a vehicles anywhere within a determined area (Weikl and Bogenberger, 2012; 
Firnkorn and Müller, 2011). Station-based car sharing services either require the users to do round-trips 
and return the vehicle to the same station it was picked up at (two-way car sharing), or allow for one-way 
trips between different stations. To ensure that there is no imbalance, relocation techniques are needed in 
this case (Jorge and Correia, 2013; Shaheen and Cohen, 2013). As our work considers electric vehicles with 
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a specific charging infrastructure, station-based car sharing in a two-way mode is the most suitable concept 
and represents the basis of our model.  

Research on car sharing related topics and the number of respective publications increased over the past 
few years. Many of these address the history and the development of car sharing organizations. A few also 
analyze locations, typical users and their habits, or the environmental and social benefits of car sharing. 
While a broader overview on related literature can be found in the article from Degirmenci and Breitner 
(2014), we focused our review on optimization approaches for car sharing, electric car sharing, estimation 
of demand, and DSS. The following section succinctly outlines the most applicable articles, to provide a 
state-of-the-art view on the topic of car sharing. 

Publications on optimization of car sharing networks are manifold, yet they emphasize different aspects. 
Within our literature review we therefore categorize all relevant articles based on their main focus into one 
or more of six categories (Table 1). The first category, “location optimization”, refers to the allocation of 
stations into a car sharing network and typically represents a strategic approach. The “vehicle optimization” 
category designates the tactical decision level with corresponding approaches that assess the optimal 
number of vehicles at each station. In addition to these long-term perspectives, articles also review 
operational business with goals such as optimizing the service or relocating vehicles. These are consolidated 
into the “operative optimization” category. Articles concerning the demand for car sharing, at times 
including profiles of typical car sharing users, fall into the “demand” category. The “DSS” category includes 
articles introducing decision support systems regarding various aspects of car sharing. “Electric car 
sharing” is considered separately from traditional car sharing approaches because both charging 
infrastructures and charging cycles have to be taken into account. 

A representative example for the first category is Awasthi et al. (2007), who present a three-stage approach 
to the selection of car sharing stations. They identify potential stations, assign allotted weights for each 
station, and then select the final stations. Musso et al. (2012) introduce a similar approach to extending an 
existing car sharing network by assigning three success factors to different regions and installing new 
stations and vehicles in the highest-rated regions. De Almeida Correia and Antunes (2012) consider one-
way car sharing and combine the strategic perspective of planning locations and size of car sharing stations 
with the operative aspect of profit maximization per period for different relocation procedures. The model 
from Boyaci et al. (2015) has a similar focus. It explores the best location, fleet size, and relocation 
techniques in a one-way car sharing application with the aim of maximizing profit. Cepolina and Farina 
(2012) provide a cost minimization model for the distribution of personal intelligent city accessible vehicles 
(PICAVs) within the city of Genoa (Italy), including a fully user-based relocation strategy. Many operative 
models introduced in the literature fully focus on daily service. One example is Fan et al. (2008), who 
develop a multistage stochastic linear model to maximize the daily profit by means of a dynamic daily 
allocation of vehicles. The model calculates a relocation scheme by means of fixed reservations for the next 
day. Kek et al. (2009) present an optimization model and DSS to reduce the cost for the relocation of one-
way car sharing services by considering operational costs. Compared to approaches regarding conventional 
car sharing, research and applications in the “electric car sharing” category are still relatively limited. 
Khanna and Ventors (2013) provide a prototype concept to integrate electric car sharing into the public 
transport system and state that information and communication technology innovation is a key component 
to success. A field study presented by Steininger and Bachner (2014) investigates the provision of electric 
vehicles by a rail company and indicates that the service can succeed. Potential demand for electric car 
sharing is reviewed in a survey by Shaheen et al. (2013), who report that 66% of all participants of the 
population in San Francisco are interested or at least maybe interested in electric car sharing. Literature 
also suggests that critical success factors exist to reach those potential car sharing users. Andrew and 
Douma (2006) identified population density, age, residents commuting, household type, and parking 
situation as critical success factors. Results of a study from Costain et al. (2012) show that car sharing is 
preferably used during the weekend, with a rising trend throughout the week. An overview of demand 
estimation and defined operations is provided by Jorge and Correia et al. (2013). Due to the criticality of 
the success factors and the related demand, decision support appears to be reasonable and can be found in 
several approaches. An example for the “DSS” category is represented by an article of El Fassi et al. (2012), 
who developed a DSS based on a discrete event simulation, which determines the best expansion strategy 
for the desired investigation area. Possible strategies, for instance, consist of the establishment of new 
stations, the expansion of existing stations, and the merging and demerging of stations.  
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Table 1. Car sharing related literature categorized by focus 
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Alfian et al. 2014   x    Simulation tool to evaluate the service model in car sharing systems 
Andrew and 
Douma 

2006     x  
Study of car sharing market in US. Success factors are: density, age, residents 
commuting, household type, parking situation 

Awasthi et al. 2007 x x     Optimization of car sharing location based on a case example in France 
Bardhi and 
Eckhardt 

2012     x  Analysis of access-based consumption in the context of car sharing 

Boyaci et al. 2015 x x x x   
Generic model for supporting the strategy (station location and size) and tactical 
decisions of one-way car sharing systems 

Burkhardt and 
Millard-Ball 

2006     x  Analysis of car sharing users 

Celsor and 
Millard-Ball 

2007 x    x  Tool to identify neighborhoods that can support car sharing in the US 

Cepolina and 
Farina 

2012  x  x   Optimization of distribution of electric vehicles (PICAVs) in Genoa 

Cervero 2003     x  Analysis of car sharing users in the first year of a CSO in San Francisco 
Cervero and 
Tsai 

2004     x  
Analysis of car sharing users in the second year of a CSO in San Francisco and 
positive developments within the city 

Costain et al. 2012     x  Analysis of user behavior: case example Toronto 
de Almeida 
Correia and 
Antunes 

2012 x  x    
Maximize daily profit by an optimization approach to depot location in one-way car 
sharing services 

Di Febbraro et 
al. 

2012   x    
Simulation and optimization of the relocation problem of one-way car sharing: case 
example Turin 

El Fassi et al. 2012  x x   x 
Optimization of car sharing stations and vehicles within existing CSO (operative 
planning) 

Fan et al. 2008   x    
Multistage stochastic linear model to maximize the daily profit by relocating the 
vehicles 

Habib et al. 2012     x  
Development and validation of an econometric model for behavior of car sharing 
users to provide support for car sharing planners 

Jorge and 
Correia 

2013     x  Literature review of demand estimation of car sharing systems 

Jorge et al. 2014   x    
Mathematical model to optimize relocation operations to maximize the profit and a 
simulation tool to study different real-time relocation policies 

Kek et al. 2009   x   x 
Optimization model and DSS to determine a set of near-optimal manpower and 
operating parameters for the vehicle relocation problem 

Kek et al. 2006   x    Simulation model on operator-based relocation techniques 
Khanna and 
Venters 

2013    x   Case study in Berlin to integrate electric car sharing into the public transport system 

Millard-Ball et 
al. 

2005     x  Analysis of the market, barriers, impacts, and critical success factors 

Morency et al. 2011     x  Analysis over three years of car sharing members in Montreal 
Musso et al. 2012 x x     Expansion plan of car sharing services in new districts in Rome 
Nobis 2006     x  Survey of the awareness and market potential of car sharing service in Germany 
Rodier and 
Shaheen 

2003     x  Scenario analysis using an advanced travel demand model in the Sacramento region 

Schaefers 2012     x  Analysis of motives of car sharing usage in the US 
Shaheen and 
Cohen 

2008     x  International comparison of car sharing 

Shaheen and 
Martin 

2010     x  Explorative study of demand for car sharing systems in Beijing 

Shaheen et al. 2013    x   Study of electric vehicle car sharing in San Francisco 
Steininger and 
Bachner 

2014    x   
Evaluating costs, market potential and environmental merits of implementation of 
car sharing in Austria 

Stillwater et al. 2009     x  IS-based study of influencing factors of car sharing demand 
Ter Schure et 
al. 

2012     x  Impacts of parking situation and car sharing demand 

Wagner et al. 2014  x    x Decision support of points of interest in free-floating car sharing system 
Wang et al. 2012     x  Survey of profile of car sharing members in Shanghai 
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However, none of these articles provide support for strategic optimization of location, number, and size of 
stations. Neither considers electric vehicles in their optimization approaches. However, many publications 
emphasize the importance of a well-planned network that optimally addresses the demand. They further 
indicate the suitability of electric vehicles for car sharing. We therefore consolidated many of the above 
ideas in our approach. We developed a mathematical model that optimizes an electric car sharing network 
and maximizes the organization’s profit as objective function. Critical conditions discussed in many of the 
articles are combined in the constraints of this model. We also gave a lot of critical thought to our dataset 
and diligently implemented the existing background knowledge into our supply and demand datasets. We 
implemented this model to provide valuable insight for real-life decision makers. 

Optimization Model 

The presented optimization model is based on the basic model from Rickenberg, Gebhardt, and Breitner 
(2013) and maximizes the annual profit of a car sharing organization. The following assumptions form the 
basis of the optimization model:  

 The object in consideration is the classic two-way car sharing scheme. Every vehicle has its designated 
parking lot, meaning vehicles have to be picked up and returned to the same location. 

 The objective of the optimization model explicitly concerns strategic planning of a car sharing network; 
operational aspects are not considered. 

 Stochastic and normal distributed demand points for car sharing exist.  

 The demand points are allocated within the investigation area and are provided on a punctual basis by 
geographic coordinates. 

 The demand has to be fulfilled completely to reach the maximum customer satisfaction. 

 Possible supply points in the form of car sharing stations are spread over the specific investigation area 
to satisfy the demand. These points are also characterized by exact geographic coordinates. 

 For each of the potential stations, a maximum limit of parking lots is defined to reflect local land-use 
conditions in the surroundings of the respective station. 

 Annual leasing costs for vehicles, parking lots, and stations are introduced. These contain all incidental 
expenses, and explicitly not only the initial costs.  

 Subject matter is electric vehicles, which are completely battery powered and require trip-dependent 
charging cycles. 

 Two different options of the charging process can be simulated for the otherwise homogenous fleet. 
Firstly, regular charging can be used through the conventional local grid-connection. As an alternative, 
more efficient fast chargers via special 50 kW DC charging elements can be chosen. Depending on the 
option, different charging times and adjusted leasing costs are being considered. 

 The implementation of electric vehicles into the car sharing fleet requires additional parameters. 
Charging condition and influencing elements such as range, average speed, and power consumption are 
therefore considered. The power consumption depends on the duration of a trip and the distance driven. 
Hence, these are integrated as trip-dependent parameters and modelled stochastically by a normal 
distribution. 

 A maximum number of possible trips per day results from the choice of trip-dependent parameters and 
the corresponding fast or regular charging times. 

 The charging time is linearly correlated to the travel time. This means that one hour of travel time is 
always associated with a fixed time to recharge the battery. 

 Variations in demand typically do not represent a part of a strategic, i.e., long-term problem. To grant 
decision makers a certain degree of variation, the suggested model allows the demand to be varied 
throughout the week by determining peak and off-peak weekdays. An additional variation of the demand 
(e.g., throughout the day or year) is not expected to add further value to the strategic allocation of stations 
and vehicles and should rather be included in operative approaches. 
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Table 2. Parameters used 

Sets:  

𝑖 = (1,…𝑚): 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 = (1,… , 𝑛): 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

Parameters:  

𝑑𝑗: 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 [𝑟𝑒𝑛𝑡𝑠/𝑤𝑒𝑒𝑘] 𝑚𝑖𝑛: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑟𝑒𝑛𝑡 [𝑚𝑖𝑛] 

𝑟𝑒𝑣: 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑓𝑜𝑟 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 [𝑈𝑆𝐷 𝑝. 𝑎. ] 𝑡𝑟𝑖𝑝: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑟𝑖𝑣𝑒𝑛 [𝑘𝑚] 

𝑒𝑛𝑒𝑟𝑔𝑦: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 [𝑘𝑤ℎ/𝑘𝑚] 𝑝𝑟𝑖𝑐𝑒: 𝑝𝑟𝑖𝑐𝑒 [𝑈𝑆𝐷/𝑘𝑤ℎ] 

𝑐𝑣: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 [𝑈𝑆𝐷 𝑝. 𝑎. ] 𝑐𝑝: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑡 [𝑈𝑆𝐷 𝑝. 𝑎. ] 

𝑐𝑐𝑟𝑒𝑔: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑟  [𝑈𝑆𝐷 𝑝. 𝑎. ] 𝑐𝑐𝑓𝑎𝑠𝑡: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑎𝑠𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑟  [𝑈𝑆𝐷 𝑝. 𝑎. ] 

𝑐𝑠: 𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑡𝑖𝑜𝑛  [𝑈𝑆𝐷 𝑝. 𝑎. ]  

𝑥𝑟𝑒𝑔: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑖𝑝𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 [𝑢𝑛𝑖𝑡𝑠] 𝑥𝑓𝑎𝑠𝑡: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑖𝑝𝑠 𝑓𝑎𝑠𝑡 [𝑢𝑛𝑖𝑡𝑠] 

𝑑𝑚𝑎𝑥: 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑏𝑢𝑠𝑖𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑟𝑒𝑛𝑡𝑠/𝑑𝑎𝑦]  

𝑚𝑎𝑥𝑙𝑖:𝑚𝑎𝑥. 𝑙𝑜𝑡𝑠 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 (#) 𝑚𝑎𝑥𝑙𝑓𝑎𝑠𝑡:𝑚𝑎𝑥. 𝑙𝑜𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑠𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑟 (#) 

𝑑𝑖𝑠𝑡𝑖𝑗: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑛𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑗 [𝑘𝑚] 𝑚𝑎𝑥𝑑𝑖𝑠𝑡:𝑚𝑎𝑥. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤.  𝑖 𝑎𝑛𝑑 𝑗 [𝑘𝑚] 

Decision variables: 
 

𝑣𝑖
𝑟𝑒𝑔
: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑦𝑖: 1, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑏𝑢𝑖𝑙𝑡, 0 𝑒𝑙𝑠𝑒 

𝑣𝑖
𝑓𝑎𝑠𝑡

: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑓𝑎𝑠𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑧𝑖𝑗: 1, 𝑖𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖, 0 𝑒𝑙𝑠𝑒 

  

 

 

  𝑴𝒂𝒙. 𝑭(𝒗𝒓𝒆𝒈, 𝒗𝒇𝒂𝒔𝒕, 𝒚) =

𝑟𝑒𝑣𝑒𝑛𝑢𝑒

∑𝑑𝑗 ∗ (𝑚𝑖𝑛 ∗ 𝑟𝑒𝑣)

𝑛

𝑗=1

⏞            
−

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠

∑𝑑𝑗 ∗ (𝑡𝑟𝑖𝑝 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝑝𝑟𝑖𝑐𝑒)

𝑛

𝑗=1

⏞                    
 

− 

𝑙𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠

∑(𝑣𝑖
𝑟𝑒𝑔

∗ (𝑐𝑣 + 𝑐𝑝 + 𝑐𝑐𝑟𝑒𝑔) + 𝑣𝑖
𝑓𝑎𝑠𝑡

∗ (𝑐𝑣 + 𝑐𝑝 + 𝑐𝑐𝑓𝑎𝑠𝑡) + 𝑦𝑖 ∗ 𝑐𝑠)

𝑚

𝑖=1

⏞                                            
 

(1) 

∑𝑧𝑖𝑗 ≥ 1      ∀ 𝑗

𝑚

𝑖=1

 (2) 

𝑦𝑖 ≥ 𝑧𝑖𝑗      ∀ 𝑖 𝑎𝑛𝑑 𝑗  (3) 

𝑣𝑖
𝑟𝑒𝑔

∗ 𝑥𝑟𝑒𝑔 + 𝑣𝑖
𝑓𝑎𝑠𝑡

∗ 𝑥𝑓𝑎𝑠𝑡 ≥∑(𝑑𝑚𝑎𝑥𝑗 ∗ 𝑧𝑖𝑗)

𝑛

𝑗=1

      ∀ 𝑖 (4) 

𝑣𝑖
𝑟𝑒𝑔

+ 𝑣𝑖
𝑓𝑎𝑠𝑡

≤ 𝑚𝑎𝑥𝑙𝑖     ∀ 𝑖 (5) 

𝑣𝑖
𝑓𝑎𝑠𝑡

≤ 𝑚𝑎𝑥𝑙𝑓𝑎𝑠𝑡       ∀ 𝑖 (6) 

𝑑𝑖𝑠𝑡𝑖𝑗 ∗ 𝑧𝑖𝑗 ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡     ∀ 𝑖 𝑎𝑛𝑑 𝑗 (7) 

𝑦𝑖 ∈ {0, 1}     ∀ 𝑖 (8) 

𝑧𝑖𝑗 ∈ {0, 1}     ∀ 𝑖 𝑎𝑛𝑑 𝑗 (9) 

𝑣𝑖
𝑟𝑒𝑔
, 𝑣𝑖
𝑓𝑎𝑠𝑡

≥ 0     ∀ 𝑖 (10) 

Figure 2. Underlying mathematical model 
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The objective function (1) maximizes the profit of a car sharing organization by calculating the revenue and 
subtracting the resulting variable and the annual leasing costs. Demand points can be served by one or more 
stations to split the expected demand (2). Constraint (3) ensures that every demand point can only be 
assigned to a station that is actually built. The existing demand has to be satisfied completely in compliance 

with corresponding charging times (4). The factors 𝑥𝑟𝑒𝑔and 𝑥𝑓𝑎𝑠𝑡are used to calculate the possible number 
of trips per day, taking into account the average speed, trip duration, and corresponding charging times. 
Every station has a limited number of parking spaces for vehicles (5) to consider local parking conditions 
at that station. To prevent a grid overload, constraint (6) sets a maximum amount of fast charging 
infrastructures at all stations. Constraint (7) ensures that a maximum distance between a demand point 
and an associated station is not exceeded. Equations (8), (9), and (10) set the specific value range of the 
decision variables of the model. 

DSS 

In addition to the developed mathematical model that optimizes the network of car sharing stations, a 
decision support system (DSS) is constructed. The developed DSS is a Java-based web application that 
enables decision support for the optimal placement and size of car sharing stations. It integrates the 
optimization model and additional applications into one system. As principles of usability and 
comprehensible visual appearance are applied, it enables decision makers to easily run their own case 
studies. After the desired datasets are developed and imported and after parameters are selected, the DSS 
solves the equations of the underlying model and displays the appropriate results in an illustrative way. As 
a result it contributes to less pollution and a more sustainable environment in accordance with the Green 
IS/DSS concept. The basic requirement for the optimization is the software GAMS, a modeling system for 
mathematical programming. Further software used to develop the DSS is Eclipse Luna with the actual Java 
Development Kit and Notepad++. The resulting system architecture and data flow is shown in Figure 3. 

 

Figure 3. Dataflow of the decision support system 

As illustrated above, a dataset for the respective investigation area needs to be developed by decision makers 
as external input in the form of an .xml file. The DSS provides the option to both load and edit data, such 
as potential car sharing stations. Furthermore, parameters of the mathematical model can be set and varied 
by the user to simulate different scenarios. When starting the optimization, an .inc file that contains the 
input data including the values of parameters is written. GAMS and the connected solver IBM ILOG CPLEX 
then calculate the optimal solution of the mathematical model. GAMS automatically generates a .log and a 
.lst file which are used to display the optimization process and the results. For an additional graphical 
visualization, the resulting car sharing network can be exported to an .html file via Google Maps API. 
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Figure 4. Design and functionality of the decision support system 
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Figure 4 provides an overview on the respective windows of the GUI. The main GUI “OptECarShare 1.5” is 
grouped into six graphically separated sections and a menu bar. In the menu bar, users can define the GAMS 
path and the working directory, as well as optimization accuracy, which is preset to five percent. The first 
section enables loading and modification of a dataset. The two vertical scrollbars can be used to quickly 
review the stations and demand points, which are displayed in numerical order. The stations and demand 
locations, as well as their specific properties, can be viewed in detail and easily edited via the “Edit Stations” 
and “Edit Demand” buttons. The next four sections contain the basic parameters. The first section contains 
different incidental costs that are described as leasing costs per year. This includes the leasing cost for a 
vehicle, parking lot, and station, as well as costs for the regular and the fast charging infrastructures. The 
second section of the main GUI contains different trip-dependent distributions. The dataset assigns mean 
values to every demand location that are normal distributed with an adjustable standard deviation. In 
addition, the normal distributed trip duration and the trip distance with their corresponding deviations can 
be set. In the third section, the threshold variables for the maximum number of fast charging infrastructures 
and the maximum distance between supply and demand locations can be adjusted. The fourth section 
includes the variables that directly affect profit, including revenue per minute, consumption per kilometer, 
and energy price. The last section at the bottom of the application contains six buttons. The “Set Electric 
Properties” and “Demand per Day” buttons are used to modify preset values, as shown in Figure 4. The 
“Optimize” button starts the optimization through the linkage to GAMS, as explained before. The 
“Optimization” window illustrated above displays the running process. As GAMS and CPLEX work with the 
branch and cut algorithm, every line shows one single branch with information about the related objective, 
best integer, best bound, and the gap to the optimal solution. Only those branches are displayed that are 
better than the solution found before. At the end of the optimization process, the results are displayed in 
the Optimization window. The “Visualize Results” button activates the linkage between the DSS and Google 
Maps. The resulting network of car sharing stations is shown in Figure 5. The “View GAMS File” button 
opens the corresponding mathematical model. The DSS further includes error messages that prevent the 
start of the optimization when input is incorrect or missing, e.g., if the overall weekly demand exceeds 100 
percent. They quickly take decision makers to the error so that it can be fixed quickly. The final 
“OptECarShare 1.5” web application, the optimization model, and sample data sets are available at 
130.75.63.115/OptECarShare. 

Dataset Creation, Applicability, and Benchmarks of San Francisco 

In order to evaluate the developed DSS, we provide an application example together with benchmarks. An 
additional application example supporting our results is available at 130.75.63.115/OptECarShare to show 
transferability. The success of a car sharing organization depends on different demographic and geographic 
characteristics such as high population density, parking pressures, mix of transportation means, and the 
ability to live without a vehicle (Celsor and Millard-Ball, 2007; Cohen et al., 2008; Stillwater et al., 2009). 
For this purpose, we chose the city of San Francisco, which satisfies all required characteristics and already 
successfully accommodates car sharing networks. San Francisco has an appropriate population of more 
than 825,000 inhabitants within an approximately quadratic urban area with an edge length of about eleven 
kilometers. With the resulting population density of more than 7,000 people per square kilometer, San 
Francisco is one of the most populated cities in the US, leading to a lack of parking space. Within the mostly 
rectangular oriented streets, a well-developed public transport system covers the complete city. In addition 
to train and bus connections to the adjoining San Francisco Bay Area, there are networks of light rails, cable 
cars, historic streetcars, trolley coaches, and buses. With only one operating company supervising all of 
these means of public transportation and with co-resident expansion plans in place, the ability to live 
without a vehicle continues to improve. After choosing an operation area, the positioning of demand and 
supply points is the most crucial factor for a car sharing organization (Costain et al., 2012). For our 
validation, we set the demand locations analogous to the subdivision of blocks according to the U.S. Census 
Bureau. With the exception of five sparsely populated blocks (e.g., the Golden Gate Park) which are not 
considered, San Francisco is divided into 573 blocks. Each block is characterized by a particular demand 
location in its center of settlement indicated by geographical coordinates. A total of 1,448 potential supply 
points is distributed consistently over the whole investigation area and, likewise with precise geographical 
positions. Due to the proven correlation between public transport and car sharing, possible stations are set 
close to access points of public transportation (Celsor and Millard-Ball, 2007). 

The estimation of demand levels for car sharing is summarized in a literature review published by Jorge 
and Correia (2013). As stated in recent studies and investigations, some generalizations about car sharing 
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participants are feasible. Correspondingly, we base our demand estimation on several population 
characteristics. The by far highest share of people conducting car sharing are those between 22 and 39 years 
old (Andrew and Douma, 2006; Burkhardt and Millard-Ball, 2006; Firnkorn and Müller, 2012; Morency et 
al., 2011). A typical car sharer is above-average educated (at least to bachelor degree level) and often lives 
in small non-family households with a maximum of two people (Andrew and Douma, 2006; Burkhardt and 
Millard-Ball, 2006; Habib et al., 2012; Stillwater et al., 2009). Equipped with less than one vehicle per 
household, a car sharer generally lives in an apartment building with more than five housing units (Andrew 
and Douma, 2006; Burkhardt and Millard-Ball 2006; Firnkorn and Müller, 2012; Habib et al., 2012). 
Several other criteria such as typical income levels are not considered due to ambiguous information. Based 
on these findings, we determined a group of potential car sharing users for each block that complies with 
all of these requirements. We used the latest forecasted data published by the U.S. Census Bureau for 2013 
based on Census 2010, available on their homepage. Based on that data, we calculated the weekly demand 
per block as input for the mathematical model as follows.  

First, we determined five population characteristics for each block, by assigning typical age, education, 
housing unit, available vehicles, and household type. We then allocated the number of potential car sharing 
users per block in accordance with these characteristics. Depending on the respective characteristics, the 
number of potential users may drop to zero, for example in blocks with family households or elderly people 
who are not typical car sharing users. As not every potential users actually participates in car sharing, the 
absolute number of car sharers is much lower. Different surveys suggest inconsistent values, therefore we 
vary the percentage between 1% and 10% in the benchmark section. In accordance with Burkhardt and 
Millard-Ball (2006), Habib et al. (2012), and Morency et al. (2011), we assume an average trip frequency of 
three trips per user per month. Hence, we calculated the demand per week for each block as follows:  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑢𝑠𝑒𝑟𝑠 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑜𝑐𝑢𝑠 𝑔𝑟𝑜𝑢𝑝 ∗ 3 𝑡𝑟𝑖𝑝𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ𝑠

30 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ
∗ 7 𝑑𝑎𝑦𝑠 𝑎 𝑤𝑒𝑒𝑘 

(11) 

The potential station locations within the optimization model are characterized by a particular limit of 
parking lots. These numbers result from local conditions such as bilateral parking, parallel or transverse 
parking, on-street, or off-street parking. Table 3 summarizes the initial values used for the required 
parameters to execute the DSS. We chose the distinct values based on the following explanations. The first 
values refer to the various annual leasing costs. The leasing costs for one vehicle include initial and running 
costs for purchase, battery, insurance, taxes, maintenance, cleaning, administration, depreciation, and 
amortization over the year. Leasing costs for parking lots correspond to rental charges of the ground. Cost 
for maintenance and cleaning of a parking lot as well as parking signage are incurred within the costs for a 
station. The leasing costs for a regular charging infrastructure unit contain the establishment and 
maintenance of a power line to the grid of the infrastructure. The annual leasing cost for a unit of fast 
charging infrastructures consider the installation, connection, and maintenance of high voltage power lines 
to the power mains. 

Table 3. Applied values for parameters 

Parameter Value Parameter Value 

Vehicle [USD p.a.] 12,000 Max. number of fast chargers per station 2 

Parking lot [USD p.a.] 1,200 Max. distance [km] 0.75 

Station [USD p.a.] 600   

Regular charging infrastructure [USD p.a.] 100 Max. range of a vehicle [km] 150 

Fast charging infrastructure [USD p.a.] 6,000 Average speed [km/h] 25 

  Charging time regular [min] 480 

Std. dev. of demand 2 Charging time fast [min] 30 

Average trip duration [min] 120   

Std. dev. trip duration [min] 60 Monday 0.1 

Average trip distance [km] 35 Tuesday 0.1 

Std. dev. trip distance [km] 20 Wednesday 0.1 

  Thursday 0.15 

Revenue per minute [USD] 0.15 Friday 0.15 

Consumption [kWh/km] 0.15 Saturday 0.2 

Price per kWh [USD] 0.1 Sunday 0.2 
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The discussed demand levels per block serve as mean value within a normal distribution. Likewise, the trip 
duration and the trip distance are normal distributed. The mean values are chosen based on findings of 
recent studies. The distance driven per trip varies between 20 and 60 kilometers (Cervero and Tsai, 2004; 
Duncan, 2011; Morency et al. 2011). The whole duration of a trip, including driving and parking times, varies 
between half an hour and four hours (Alfian et al., 2014). To limit the solution, thresholds are considered. 
The threshold of a maximum number of fast charging infrastructures restricts the solution regarding the 
capital expenditure and the securing of network coverage. One of the strongest factors of influence on the 
solution is the maximum distance between demand and station location. Various surveys and observations 
deviate between 250 meters and two kilometers, others state a maximum walking distance of 10.75 minutes 
(Morency et al., 2008; Costain et al., 2012; Celsor and Millard-Ball, 2007). The revenue per minute includes 
both driving and parking times. The energy consumption per kilowatt hour of the vehicle is computed per 
kilometer. Besides these adjustments, some additional parameters related to the charging cycles were 
chosen. The maximum range of the vehicle is set to a typical range of the average electric vehicle. The 
average speed is set to a typical city locomotion of 25 km/h in accordance to Kriston et al. (2010). 
Recharging of an empty battery with a regular charging infrastructure via a standard outlet such as a 
charging station connected to the grid takes about eight hours. The 50 kW DC high voltage fast charging 
infrastructure significantly increases the process. We chose a value of 30 minutes to recharge a battery 
based on the specifications of different manufacturers. Literature states that the demand level varies 
between weekdays and weekends, which is adjustable via a corresponding button (Millard-Ball et al., 2005). 
Values are chosen to simulate that the usage of car sharing rises slightly but constantly throughout the week 
and achieves its maximum at the weekend (Costain et al., 2012; Cervero, 2003; Alfian et al. 2014).  

The application example uses the above parameters from Table 3. Calculations were conducted on a 
standard laptop (Intel Core i7 2.5 GHz CPU with 16 GB RAM) using GAMS 24.1.3 with CPLEX 12.5.1 and a 
set optimization gap of 10% or a maximum computing time of 6,000 seconds. Figure 5 visualizes the 
resulting station network for the city of San Francisco in Google Maps. When users of the DSS click the 
markers, the properties of the respective station are shown, i.e., the specific number of regular and fast 
chargers. In order to avoid an information overload in the illustration, markers for the demand are not 
directly shown. However, when users click on an area close to a station marker, the demand locations and 
their respective properties are displayed. 

 

Figure 5. Optimization results 
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The results indicate that a car sharing organization can gain a profit of USD 129,876 when reaching 5% of 
the potential users in the identified focus group. In this example, a total of 64 stations are built. The number 
of required vehicles to satisfy the existing demand is 68, including 26 vehicles with fast and 42 with regular 
charging infrastructure. In general, the optimal values to maximize profit depend on the settings and 
parameters used. Different alternatives can be calculated and visualized to allow decision support for the 
process of finding the solution that best meets the actual budgetary or strategic goals of the car sharing 
organization.  

With the applicability of the model demonstrated in the above example, the section below varies certain 
parameters and provides corresponding benchmarks. Table 4 is divided into three parts, with 0.5 km, 0.75 
km, and 1 km as maximum distance between each demand point and the next car sharing station. Each part 
illustrates the respective annual profit and provides the indicated number of stations and vehicles (as the 
sum of regular and fast charging infrastructures). With a higher maximum distance, fewer vehicles and 
stations are necessary to satisfy the demand. This also means that the average utilization per vehicle is 
higher and the profit increases. It should be noted though that the overall demand might decrease if 
potential users do not have a car sharing opportunity nearby. We tested the model with five different 
demand profiles (1%, 3%, 5%, 7.5%, and 10% usage of the identified focus group). The results show the 
necessary minimum number of car sharing users to establish profitable electric car sharing. In combination 
with an additional market analysis, decision makers therefore get a good idea of their business case. As 
expected, with a higher percentage of users, the car sharing organization needs more stations and vehicles, 
but also generates a higher profit or reaches its break-even point. Moreover, the number of vehicles with 
fast charging infrastructure increases with more users to satisfy the additional demand. We also considered 
two different average trip durations, which presumably depend on local conditions and thus differ between 
cities. With longer trip durations, the profit of the car sharing organization increases markedly although 
more vehicles are required. In many cases the profit more than doubles when comparing the 3-hour trip 
duration to the 2-hour duration. This again shows the decision makers the importance of knowing the 
specific demand of their respective investigation area and urges them to cautiously examine their business 
case. Results also show that the number of vehicles with fast charging infrastructure usually increases with 
a higher trip duration to ensure quick availability of the vehicle for the next user. The number of vehicles 
with a regular charging infrastructure consequently declines since vehicles with fast chargers can serve 
more users. In summary our benchmarks validate DSS and model. They also highlight the importance of 
knowing the potential users, as the tool is only as good as the data used for the calculations. Especially the 
demand is one of these critical success factors. The tool supports decision makers in evaluating their 
business case and points out the fine line between success and failure. 

Table 4. Benchmarks 

Average trip 
duration of  

2 hours 

Max. dist. = 0.5 km Max. dist. = 0.75 km Max. dist. = 1 km 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

1% of focus group -1,263,348 123 1 122 -425,148 61 5 56 -156,848 40 9 31 

3% of focus group -909,476 121 9 112 -208,175 68 15 53 83,824 42 20 25 

5% of focus group -527,120 117 17 102 134,579 66 25 43 279,580 51 29 27 

7.5% of focus group -94,709 115 29 90 403,191 71 37 43 588,091 56 41 24 

10% of focus group 272,686 121 41 84 758,186 73 47 41 872,186 58 54 23 

Average trip 
duration of  

3 hours 

Max. dist. = 0.5 km Max. dist. = 0.75 km Max. dist. = 1 km 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

profit 
(USD) 

stations 
(#) 

vfast 
(#) 

vreg 
(#) 

1% of focus group -1,001,207 125 5 120 -259,307 66 16 51 -84,907 44 27 23 

3% of focus group -348,149 115 25 90 133,250 69 36 40 333,250 51 40 20 

5% of focus group 146,707 118 40 82 563,909 78 49 38 719,606 60 57 17 

7.5% of focus group 687,456 124 58 79 621,456 86 65 45 1,147,856 86 74 23 

10% of focus group 1,240,667 130 75 79 1,502,266 108 87 43 1,731,366 81 96 14 
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Discussion 

We created, refined, and evaluated research artifacts in order to provide decision support for the 
optimization of the location and size of electric car sharing stations. We based our introduced optimization 
model on existing OR models and integrated it into a DSS. In doing so, we provide for additional usability 
by creating an intuitive interface for managers, planners, and decision-makers. We further explained the 
creation of the required dataset using the application example of San Francisco. Respective benchmarks 
completed our demonstration and show feasibility of model and DSS.  

The developed decision support system “OptECarShare 1.5” answers our research question by providing a 
DSS that optimizes the allocation of electric car sharing stations while maximizing the profit. The model 
allows users to easily integrate the characteristics of a city to solve the complex problem of determining 
optimal locations and sizes of car sharing stations. It enables car sharing organizations to plan and 
implement car sharing within a new city in one big step to demonstrate extensive market presence from the 
beginning as compared to common trial-and-error concepts. Numerous parameters such as electric 
properties of vehicles or various leasing costs are included to help fine-tune the strategic optimization. This 
feature eases the inclusion of different scenarios and accounts for alternative vehicles, such as subcompact 
or mid-range electric vehicles, or the use of different charging infrastructures as is shown in our examples. 
It also enables decision makers to perform sensitivity analyses to evaluate the effects of different input 
parameters and thus helps to ascertain a profitable solution for their individual case. In order to achieve 
low computing times, a gap can be set, so that a result is found quickly. With additional computing time 
further improvements of the gap are possible. However, since the model addresses strategic planning as 
compared to operative control, for example, computing time does not represent a critical aspect. This also 
applies to other operative factors, such as demand variations throughout the day or year (e.g., peaks due to 
events), cleaning cycles, or vehicle inspection, which are not considered. The applicability and feasibility of 
the developed DSS were tested using the city of San Francisco as an example. The city fulfills the required 
prerequisites to theoretically allow for profitable car sharing and has a proven track record of successful car 
sharing implementation. The benchmarks suggest that the approach of electric car sharing can be profitably 
realized. As expected, in addition to the optimal allocation of stations and vehicles throughout the city, the 
demand plays an important role in our results and is the key to a successful implementation. An additional 
case example regarding the city of Portland further supports our results and is available at 
130.75.63.115/OptECarShare. Overall results indicate that our DSS and the underlying optimization model 
can be applied beyond these two examples and can help decision makers to evaluate the profitability of their 
respective case. Results further emphasize the importance of accurate data, specifically regarding 
demographics, to ensure a sound dataset allowing for realistic demand estimations.  

Since car sharing, and especially electric car sharing, aim for a clean environment with state-of-the-art 
technology, the introduced model also contributes to enhanced ecological, social, and economic 
sustainability. Moreover, the model and DSS allow car sharing organizations to plan their station 
arrangements in a time-saving, yet optimal manner. This makes the artifacts a part of the Green IS concept, 
as IT is utilized to achieve environmental enhancement. As the DSS provides the main user interface and 
incorporates the underlying model, it may also be called a Green DSS. 

Limitations and Recommendations 

Our model and DSS create a precise recommendation of station allocation throughout a city. However, 
certain limitations and possible enhancements need to be considered. Theoretically, the applicability of the 
model is not limited, i.e., it can be used for any city worldwide that fulfills the discussed conditions with 
regards to geographic and demographics characteristics. The evaluation of the model and its applicability 
was limited to the city of San Francisco in the course of this article. Additional benchmarks were carried 
out for the city of Portland, and are available online. Further tests for other cities with different structure 
or population are required to ensure transferability and generalizability.  

Our model is based on many simplifications and assumptions. A realistic estimation of the demand is crucial 
to success. We consolidated a number of articles and created an image of the typical electric car sharing 
user. In combination with census data, a reasonable first demand estimation can be calculated without 
financial impact. However, the demand depends on many different variables, such as the price of car 
sharing, structure of the city, and public transport, but also on the competitive market situation. 



 A DSS for Electric Car Sharing Optimization 

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 15 

Demographic data for the considered area allows for a first estimation of the demand. Additional criteria 
can help further refine the group of potential users. Our model does not explicitly consider competition, yet 
a variation in the percentage of the focus group can indirectly adjust the demand to lower values when 
competitors are present. To underline their business case we would still encourage decision makers to gain 
additional data, for example, from questionnaires or interviews in the corresponding areas.  

Not only are further parameters such as average trip duration, speed, and distance related to the expected 
demand, they also strongly depend on individual characteristics of the respective city, including density of 
traffic and expansion of the local public transport. Although the model facilitates station allocation, it 
cannot replace a sound evaluation by decision makers. Also, we only considered deterministic data and not 
a stochastic distribution. In any case, the application example shows that the modelling of the demand is 
adequate by using literature to identify a potential user group and thereby distribute the potential demand. 
Further, the implementation of additional multi-mobility constraints, i.e., emphasizing the importance of 
stations near public transportation and especially the central station might improve the model. We only 
consider the demand of the habitual abode of potential users and not the demand around business areas or 
public transport stations due to a lack of data and research in this realm. In addition, only one average price 
for all car sharing users is assumed. In future amendments of the model, the price elasticity of demand 
should be considered as it has an influence on the demand and the profit of a car sharing organization. The 
model could also be expanded by creating timeframes throughout the day and the week and combining 
them with demand-related prices. These suggestions already considerably overlap with operational 
approaches and fine-tune our strategic model rather than significantly changing it. Since the demand for 
car sharing in a one-way and free-floating mode is increasing (Ciari et al., 2014), the two-way service 
suggested in our model is not optimal to reach the highest demand. Due to the requirement for charging 
infrastructures for electric vehicles, the free-floating service is not a suitable approach though. However, 
our model can be enhanced to include station-based one-way car sharing. A relocation algorithm has to be 
developed or adopted from an operative approach and constraints for the parking lots or charging 
infrastructures at each station would also have to be modified. At stations that are preferably used to return 
vehicles, more charging infrastructures and parking lots need to be provided. Even though possible, one-
way trips generate significantly more costs by requiring additional charging infrastructures at each station 
and staff for the relocation. Thus the proposed two-way model represents an effective way of implementing 
electric car sharing strategically using today’s technology. 

Despite the applicability and performance of the introduced model and DSS, certain refinements may 
enhance the quality of the model. The most promising adjustments can be achieved in the context of 
demand. The constraint to satisfy demand completely forces the installation of a station even if that station 
is then used by only a few people. This means that the specific station is actually non-profitable. In contrast 
to this, demand can decrease due to dissatisfaction of potential users. The reputation of the car sharing 
organization can deteriorate and therefore less demand accrues, which means that profit decreases. To 
further optimize profit, assumptions can be made regarding the charging infrastructures by assigning two 
or more vehicles to one infrastructure. For these assumptions, a safety parameter should be included to 
cover the risks so that more vehicles are available in case one vehicle cannot be charged on time. Also, the 
demand as a constant parameter could be logically connected to the supply using a factor that depends on 
the distance between supply and demand: the closer the supply is to the demand, the higher the demand. 
Likewise, due to the constant demand, the model also assumes that the client would pay whatever the car 
sharing provider charges. This missing interconnection between price and demand is likely to cause issues 
when practically applying the model. Currently, the model will calculate a rising profit with increased prices, 
not taking into account that less people would use the service. Costs for stations and corresponding parking 
lots should be amended by choosing more realistic values for the respective location. This means that a 
parking lot next to the central station is more expensive than one farther away. However, the costs for a 
parking lot is only a minor part of the overall cost so that this differentiation would not have a significant 
influence on the profit, settings, and size of stations. The profit calculation in our model focuses on revenue 
and expenditure. No taxes or other country-specific duties are included.  

As advised for DSR, deeper empirical evaluation in the field forms a major part of the relevance cycle and 
will increase practicality, rigor, and generalizability of our approach. As in 86.5% of the DSS related DSR 
artifacts, no complete field trial has been realized here (Arnott and Pervan, 2012). As opposed to an 
application based on our model, we recommend a cooperation with existing car sharing companies though 
in order to further validate and evaluate our approach. 
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Conclusions and Outlook 

Increased environmental awareness and possible cost savings are making people reconsider their current 
modes of transportation and the need for personal vehicle ownership. Car sharing, and especially electric 
car sharing, represents an attractive alternative. To successfully implement car sharing within a city, station 
locations, their sizes, and an optimal number of vehicles to satisfy the demand have to be found. 

In this article, we introduced a model to provide decision support for the complex task of planning the 
optimal locations and sizes of electric car sharing stations. The integration of the model into a DSS enhances 
the applicability and usability of our approach. The DSS provides a user-friendly interface, allows data 
import, and triggers the optimization and visualization of results. The DSS and the underlying model were 
evaluated and demonstrated using the example of the city of San Francisco. The benchmarks reveal that the 
identification of realistic demand levels can separate profitable from non-profitable car sharing. Although 
certain limitations have been identified, the applicability and usefulness of the optimization model and the 
DSS were evaluated and shown. Noticeable benefit could be drawn from deeper empirical evaluation in the 
field and a more profound quantitative analysis, which is suggested to be carried out in the context of the 
DSR relevance cycle. Especially when discussing the model, implications, and recommendations for 
additional research can be derived. The optimization model itself can and should be further refined by the 
scientific community to achieve constantly increasing sustainability through Green DSS. To conclude, we 
emphasize that the potential of electric car sharing is considerable, with regard to both sustainability and 
profitable installation. The developed model thereby supports the strategic planning phase by providing 
decision support. Along with further enhancements, our work can contribute to supporting society’s path 
towards a low emission and noise-reduced environment. 
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