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ABSTRACT 
 

Improvements in the availability, quality and quantity of mobility data led to a comeback of 
trip distribution laws and the exploration of determinants of mobility. While there is broad 
literature on long and medium distance trips and available models to describe these patterns, 
not so much research exists for short distance e-scooter sharing trips. While there is some on 
demand of these rental vehicles, explanations for trip patterns are scarce. This thesis aims to 
fill this gap by investigating patterns and quantifiable input variables which identify locations 
with high usage of e-scooter sharing services and use the generated information to explore 
their impact on the origin and destination of the trips taken by e-scooter users as well as their 
probabilities. To do so, linear and nonlinear regression as well as machine learning techniques 
are used to build descriptive and inferential models. The findings show how e-scooter usage 
interacts with the built environment and it can also help to better understand intra-city 
Micromobility, especially from e-scooters. The insights can be used to build user-orientated 
infrastructure and increase fleet efficiency. 
Key words: Micromobility, E-Scooter, O-D Trips, Machine Learning, Urban Planning 
 

1. Introduction into Urban Mobility Research 
 

1.1. Motives for Investigating Mobility Data 
 

With the increased digitization of all services, users leave behind data traces about their 
behaviour. This is also true for mobility services and journeys undertaken by individuals. This 
led to increased research in the investigation and modelling of origins and destinations of 
travellers. This momentum is mainly driven by improvements in the underlying data quality 
and quantity. During most of the 20th century surveys, aggregated and sampled data was used. 
These sources have nowadays been replaced by data about trips from millions of individuals 
with a spatial resolution of a few meters. This allows for new attempts to make generalized 
statements and improve theories and models.  
By undertaking this research, the understanding of mobility patterns, especially origins and 
destinations and traffic flow can be improved and thus, leading to more efficient land usage 
in cities. Global migration patterns cause cities to grow larger and the space in human 
agglomerations to become more desirable, therefore efficient usage will be key, considering 
that the share of people living in cities being expected to grow by 700 million between 2021 
and 2030  (deStatis, 2018) to 60 percent of the global population (UN, 2018). Taking for 
example the four German cities with more than one million inhabitants (Berlin, Hamburg, 
Munich and Cologne), traffic infrastructure accounts for 21.55 up to 26.73 percent of the built-
up area with the rest consisting of residential space (Statistische Ämter des Bundes und der 
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Länder, 2019). Therefore, this thesis aims to add to the efficient planning of traffic flows based 
on mobility data which pursues the goal to achieve higher efficiency in urban land use.  
 

1.2. Literature Review on the Usage of Mobility Data in Different Settings  
 

There are various different paths of working with intracity mobility data. Saberi et al. (2017) 
built a network graph to analyse origin-destination demand networks and additionally did a 
literature review on previous work and data sources for intra urban mobility. Amongst others 
they name Liang et al. (2012) who used GPS data from taxis in Beijing to estimate the spatial 
scaling of mobility. This type of source data was also used by Gao et al. (2013) to evaluate 
travel times in the city over time for more efficient trip planning. A methodological approach 
on fundamental concepts regarding the incorporation of social media data in urban 
computation was done by Silva et al. (2019). With regard to public transport Hasan et al. 
(2013) investigate the first, second and third highest ranking trip destination from 262 smart 
card users in London, which is used to check-in and pay for public transport fares at every 
origin and destination of a journey.  
 
Besides this research in established means of urban transport, during the 21st century new 
mobility services have emerged. For short journeys the segment of Micromobility providers 
has seen a lot of interest from investors (McKinsey, 2019). This segment consists mainly of 
bike and e-scooter sharing services (Roland Berger, 2020). Nowadays these come usually as 
dockless sharing method, which refers to the method that a rented vehicle can be picked up 
and left almost anywhere inside the business area of the service provider (Tier, 2021). In the 
past sharing schemes with fixed docking locations were used for renting and returning the 
vehicle (stadtRAD Hamburg, 2021). With dockless systems the questions arise on where, when 
and how much vehicles should be deployed in an area.  
With regard to bike sharing research into these variables has been carried out. A variety of 
studies exists which investigate determinants of customer demand, usage patterns and 
deployment strategies. Mooney et al. (2019) for example find higher demand and higher 
availability of dockless bikes in areas with higher income and better education.  
Trana et al. (2015) find altitude, capacity, network density, population, railway stations, 
student residences, cinemas and restaurants to have an impact on the frequency of 
movements at docking stations for bike sharing in Lyon. Shen et al. (2018) investigated 19 
different possible impact factors on dockless bike sharing for grid cells in Singapore. This was 
based on various underlying ideas, i.e. weather conditions, population or public transport 
variables. With regard to spatial parameters, the highest significance codes could be found for 
the availability of dockless bikes in the cells that had the biggest sum of length of cycling paths 
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and accessibility of bike racks, the share of land use of commercial and industrial buildings, 
the distance to Mass Rapid Transport stations as well as the distance to the central business 
district of the city. A similar investigation was conducted by Faghih-Imani et al. (2014) on 25 
parameters in Montreal with respect to docking stations. They investigated the infrastructure 
in terms of the density of bike sharing stations around one station, major or minor roads close 
by as well as characteristics of the build environment like metro stations, restaurants, 
universities and job offerings in a range of 250 meters around the bike sharing station.  
Yang et al. (2019) studied the impact of the opening of a new metro line in Nanchang, China 
on the trip patterns and distribution of dockless patterns and found a significant shift in origins 
and destinations of journeys. Li et al. (2020) investigated the average time a bike of a dockless 
sharing scheme remained unused between two bookings. As spatial resolution they used the 
census areas of Shanghai. They used Ordinary Least Squares (OLS) regression as well as 
Geographically Weighted Regression (GWR) to estimate the impact of population, public 
transport and points of interest in the census area on the dependent variable. For public 
transport they estimated an impact area of the subway and bus stops and calculated the 
relative share of impact areas to the seize of the census cell as well as using data on the 
number of travellers at each station. For population they used the density of this metric and 
for points of interest the relative share of restaurants, daily life services, residence and 
commercial facilities against each other. They found the highest significance on share of the 
subway impact area followed by the share of restaurants and daily life services. Furthermore, 
the rider numbers at subway stations and population density were also found to have 
significance levels below 0.1. 
 
For e-scooters the amount of research is not as dense as for bike sharing. One starting point 
is the proposal from (Zhaoa, et al., 2021) on how to scrape and manipulate the data from 
Application Programming Interfaces (APIs) of e-scooter sharing providers to extract the 
underlying journeys executed by available e-scooters. There is some literature on temporal 
usage patterns like Bai and Jiao (2020) who analysed the patterns of e-scooter usage for Austin 
and Minneapolis where they identified high usage around downtown and the university area 
but with different temporal patterns. Furthermore, they could not make constant findings in 
both cities about land usage and green spaces and therefore highlighted to take spatial 
uniqueness into account when investigating mobility patterns. Bai et al. (2021) support the 
literature review by pointing out that only few studies provide insights on what activities drive 
travel demand for e-scooters. In their work to fill this gap they identify from top to bottom 
daily dining and drinking, shopping and recreational activities as highly correlated with e-
scooter demand.  
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A different approach is undertaken by Lee et al. (2021) who built a complex model on 
predicting revenue for a potential e-scooter scheme in Manhattan and make assumptions on 
trips which are likely to be substituted by e-scooter journeys.  
With regard to trips undertaken by e-scooter users and the routes they choose there is some 
related work that focus on the characteristics of these paths. For example, Zuniga-Garcia et 
al. (2021) found that e-scooter users use mainly roadways (33%), sidewalks (18%) and bike 
lanes (11%) with a 38% share of uncharacterised paths. Zhang et al. (2021) compliment these 
findings by conducting an investigation on what streets e-scooter riders prefer. They find users 
willing to take longer routes when they can ride on bikeways (59% longer paths), multi-use 
paths (29%), one-way roads (21%) or tertiary roads (15%).  
 

1.3. Literature on Trip Distribution Laws 
 

While one could argue, that the previously introduced articles offer an indication on where 
trips start by metrics like time to book (Li, et al., 2020) or high numbers of trip activity (Shen, 
et al., 2018), there is not too much research in high spatial resolution about the determinants 
on which basis the users pick a destination or the determinants describing where it will be 
located based on a fixed origin. 
 
There are different theories on how destinations of journeys are spread across an area. These 
models are summed up under the name of trip distribution laws. The research into trip 
distribution laws can be simplified into two subgroups which try to describe mobility patterns 
of people across geographical regions, independently from the distance that is covered by the 
journeys. On the one hand there is mainly the Gravity Model and the Radiation Model for the 
party arguing that travel destinations are based on the population numbers and costs 
associated with the distance of the end points. The Gravity Model which was for a long time 
the leading framework in predicting population flows was hence applied on a variety of fields 
(Simini, et al., 2012). For example, it was used to describe the spread of Influenza (Li, et al., 
2011) or global trade patterns and potentials (Batra, 2006). Extending the original notation 
Beiró et al. (2016) added social media traces to improve the prediction capabilities at which 
destinations people will arrive in. In an intracity context (Mazzoli, et al., 2019) applied the 
model on 1$% × 1$% grid cells in London, Paris and other cities to estimate commuter flows. 
In comparison the original proposal of the Radiation Model was validated against data from 
commuting, intra-day mobility, call patterns and trade (Simini, et al., 2012).  
 
On the other hand, used models are the Intervening Opportunities Model and the Rank-Based 
Model. These models state that the destination choice is driven by the options and 
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opportunities that are available in between the start and at the possible destination. 
Therefore, if aggregated i.e. over all agents that travel, the mean distance travelled per 
journey will be shorter if the density of opportunities and alternative options is higher (Noulas, 
et al., 2012, p. 1). The argumentation of opportunity models comes with an understanding 
based on intuition, i.e. depending on where the closest supermarket is that suits the needs of 
the individual, it will drive longer or shorter and the higher the density of possible 
supermarkets, the easier the person will find what it needs close-by. The ideas of intervening 
opportunities and how they affect human migration and mobility for example, were tested 
initially in intracity migration, e.g. how likely it is for people to move from one cell to another 
based on the rent prices in the new area and comparable rent prices in cells closer to the 
previous place of living (Stouffer, 1940). Additionally, related work focused on intercity 
migration patterns (Galle & Taeuber, 1966). For traffic estimation like work and home 
commuting, inputs like job opportunities retail employment and population have been found 
to be good determinants, also called features (Clark & Peters, 1965). For the rank-based 
model, three studies could be found investigating the explanatory power of this trip 
distribution law: Noulas et al. (2012), Chen, Gao & Xiong (2017) as well as Santani & Gatica-
Perez (2013). Each of these used data from location based social media networks to estimate 
the probability that after checking in into a certain location on the social network another one 
of the locations is visited afterwards and highlighted online. In these studies, the locations are 
always places like shops, restaurant or other consumer orientated businesses and contrary to 
the other trip distribution laws not bound to a geographic area but to a geographic point.  
 
However, while some of these studies and models focus on urban mobility only very few of 
these are investigating Micromobility patterns. During the literature review one study could 
be found that has been published recently investigating the explanatory power of the Gravity 
Model on the origin-destination matrices of Bike Sharing services for a spatial resolution from 
5$% × 5$%	to 500% × 500% (Li, et al., 2021). With regard to e-scooters no study could be 
found to systemically investigate origin-destination (O-D) patterns and the determinants to 
describe and predict the destinations given a certain origin.  
In order to extend the existing research on trip distribution laws and to complement the 
literature on the spatial determinants that affect e-scooter usage and the users’ selection of 
origin and destinations, will this thesis first examine which features generate high and low 
numbers of e-scooter arrivals and departures in a fine special granularity and then use these 
findings to make statements on the origin and destination of customers as well as 
investigating the determinants that affect the probability that a certain route is chosen.  
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more emphasis on the design of the grid cells. A grid cell size in dependence of the distance 
to the origin could lead to finer results and investigation opportunities close to the start while 
reducing the number of zero observations further away from the origin cell.  
A major limitation of the thesis are missing results from other municipalities, with regard to 
the already trained model as well as training a new model on the same features in a different 
city. Such potentially gained results would proof or disproof the statements beyond the case 
study of Berlin and would give answers on the generalisation capabilities of the model.  
Another open research topic are the poor fitted O-D trajectories. There might be the potential 
to detect patterns in these routes where absolute values of residuals are high, i.e. if e-scooter 
are used relatively more often when public transport or other means of traffic offer poor 
connections to the surrounding area.  
 

7. Summary 
 

This thesis adds to the existing literature in applying trip distribution laws to e-scooter O-D 
trajectories as well as estimating determinants of traffic by means of OLS and machine 
learning algorithms which gives new insights about input features and further examination 
options for decision makers and researchers. Using trip distribution laws to describe e-scooter 
routes has to the best of the authors knowledge not been carried out before. Additionally, 
this new research was then expanded by public transport as well as built environment data.  
 
The Gravity Model is found to have less explanatory power than comparable studies using 
dockless bike sharing data. Substituting population by public transport count, sights, cafés or 
hotels increased the performance of the Gravity Model. Out of all e-scooter trips in the data 
set about half started or ended at a public transport location. These movements are higher 
where there is high frequency in public transport. Therefore, it could be found that public 
transport is a determinant for e-scooter Micromobility. These findings suggest that e-scooters 
are complimentary to public transport as they are used for the first and last mile of a traveller’s 
journey inside the city of Berlin. The findings show that this pattern holds up for origin and 
destination descriptions of journeys as well. It is concluded that public transport describes 
popular locations that create traffic. 
Features of the built environment describing the popularity and population of given areas 
have a modest impact improving the estimates from public transport. Contrary to existing 
literature job opportunities as measured by office buildings marked in OSM and bicycle 
infrastructure were found to have no correlation with e-scooter usage and routes taken.  
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In general terms, even with the rapid increase of available data, Mobility Models today cannot 
bridge the gap between low explanatory power but broad application possibilities and high 
correlation coefficients on models that only have narrow application areas where they are 
trained on, which is as well a result of this thesis. In future work the generalisation capabilities 
must be further investigated, especially in other spatial areas and cities with different 
population distributions. With more data there is the potential to add additional dimensions 
like temporal distributions and weather conditions. 
  




